首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85–98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2), total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5?×?1015 to 5?×?1015 particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of ~90% for SO2 and particle mass EIs and ~60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of ~5 as compared with JP-8.

Implications: The results of this research show that APUs can be, depending on the level of fuel usage, an important source of air pollutant emissions at major airports in urban areas. Substantial decreases in emissions can also be achieved through the use of Fischer Tropsch (FT) fuel. Based on these results, the use of FT fuel could be a viable future control strategy for both gas- and particle-phase air pollutants.  相似文献   

2.
Diluted exhaust from selected military aircraft ground-support equipment (AGE) was analyzed for particulate mass, elemental carbon (EC) and organic carbon (OC), SO4(2-), and size distributions. The experiments occurred at idle and load conditions and utilized a chassis dynamometer. The selected AGE vehicles operated on gasoline, diesel, and JP-8. These military vehicles exhibited concentrations, size distributions, and emission factors in the same range as those reported for nonmilitary vehicles. The diesel and JP-8 emission rates for PM ranged from 0.092 to 1.1 g/kg fuel. The EC contributed less and the OC contributed more to the particulate mass than reported in recent studies of vehicle emissions. Overall, the particle size distribution varied significantly with engine condition, with the number of accumulation mode particles and the count median diameter (CMD) increasing as engine load increased. The SO4(2-) analyses showed that the distribution of SO4(2-) mass mirrored the distribution of particle mass.  相似文献   

3.
The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg?1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ~40–80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ~1015 to 1017 particles kg?1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.  相似文献   

4.
Emission rates for fine particle (<2.5 microm) mass (PM2.5), carbon (organic/elemental), inorganic ions (SO4(2-), NO3-, NH4+), elements (primarily metals), and speciated organic compounds are reported for charbroiling hamburger, steak, and chicken. The PM2.5 rates for charbroiling meats ranged from 4.4 to 11.6 g/kg of uncooked meat in this study. No mass-emission rates are available from grilling, but the speciated organic data are available for these samples. Emission rates varied by type of appliance, meat, meat-fat content, and cooking conditions. High-fat hamburger cooked on an underfired charbroiler emitted the highest amount of PM2.5. The emissions were almost exclusively composed of organic carbon, with small amounts of elements and inorganic ions. Water-soluble K+ and Cl-, which are used as indicators of wood smoke in source apportionment studies, were also present in meat-cooking emissions. The speciated organic compounds that were measured include polycyclic aromatic hydrocarbons (PAHs), cholesterol, and the long-chain gamma-lactones. Charbroiling emissions yielded an average of approximately 3-5 times more PAHs, approximately 20 times more cholesterol, and approximately 10 times more lactones than grilling. These data were utilized in the ambient source apportionment analysis for the 1997 Northern Front Range Air Quality Study source apportionment.  相似文献   

5.
Continuous measurements of particle size distributions of 3-407 nm were collected from August 2002 to July 2004 at the Fresno Supersite to understand their number concentrations, size distributions, and formation processes. Measurements for fine particulate matter (PM2.5) mass, sulfate (SO4(2-)), nitrate (NO3-), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and meteorological data (wind speed, wind direction, temperature [T], relative humidity [RH], and solar radiation) were used to determine the causes of nanoparticle (3-10 nm) and ultrafine (10-100 nm) particle events. These events were found to be divided into four types: (1) 3- to 10-nm morning nucleation; (2) 10- to 30-nm morning traffic; (3) 10- to 30-nm afternoon photochemical; and (4) 50- to 84-nm evening home heating, including residential wood combustion. Intense examples of the first type (>10(4) number [#]/cm3) were observed on 29 days, nearly always during the summer. The second type of event was observed on more than 73 days and occurred throughout the year. The third type was observed on 36 days, from spring through summer. The fourth type was found on 109 days, all of them during the winter. Although sulfur dioxide (SO2) emissions in Central California are low, the small residual amounts in gasoline and diesel fuel are apparently sufficient to initiate nucleation events. These were measured in the morning, soon after the shallow surface inversion coupled with layers aloft where nucleation probably was initiated. PM2.5 concentrations were poorly correlated with nanoparticle number.  相似文献   

6.
This study compared the variations in the mass of certain particles at an urban site, Washington, DC, and at a remote site, Shenandoah National Park, VA, in the eastern United States. Seven years (1991-1997) of Interagency Monitoring of Protected Visual Environments (IMPROVE) fine particulate matter (PM2.5), PM10, coarse fraction, SO4(2-), and total sulfur data were used for this study together with available meteorology/climatology data. Various statistical modeling and analysis procedures, including time series analysis, factor analysis, and regression modeling, were employed. Time series of the constituents were divided into four terms: the long-term mean, the intraannual perturbation, the interannual perturbation, and the synoptic perturbation. PM2.5 at the two sites made up approximately 72% of the total mass for PM10, and the coarse fraction made up the remaining 28%, on average. Thirty-one percent of the PM2.5 at the DC site and 42% at the Shenandoah site was SO4(2-), based on average data for the entire period. At the DC site, the two main contributors to the constituent mass were the long-term mean and the synoptic perturbation terms, and at the Shenandoah site, they were the long-term mean and the intra-annual perturbation terms. This suggested that the constituent mass at the two sites was affected by very different processes. The terms that provided the principal contribution to the constituent mass at the two sites were studied in detail. At the DC site, dew point trends, a climate variable, were the primary driver of the 7-year trends for PM2.5, PM10, the coarse fraction, and total sulfur, and SO2 emission trends were the primary driver of the trends for SO4(2-). SO2 emission trends influenced the trends for PM2.5 and total sulfur, appearing as the second term in the model, but only parameters dealing with climate trends had significant effects on the trends for PM10 and the coarse fraction. At the Shenandoah site, only parameters dealing with climate trends affected long-term particle trends.  相似文献   

7.
Abstract

Long-haul freight trucks typically idle for 2000 or more hours per year, motivating interest in reducing idle fuel use and emissions using auxiliary power units (APUs) and shore-power (SP). Fuel-use rates are estimated based on electronic control unit (ECU) data for truck engines and measurements for APU engines. Engine emission factors were measured using a portable emission measurement system. Indirect emissions from SP were based on average utility grid emission factors. Base engine fuel use and APU and SP electrical load were analyzed for 20 trucks monitored for more than 1 yr during 2.76 million mi of activity within 42 U.S. states. The average base engine fuel use varied from 0.46 to 0.65 gal/hr. The average APU fuel use varied from 0.24 to 0.41 gal/hr. Fuel-use rates are typically lowest in mild weather, highest in hot or cold weather, and depend on engine speed (revolutions per minute [RPM]). Compared with the base engine, APU fuel use and emissions of carbon dioxide (CO2) and sulfur dioxide (SO2) are lower by 36–47%. Oxides of nitrogen (NOx) emissions are lower by 80–90%. Reductions in particulate matter (PM), carbon monoxide (CO), and hydrocarbon emissions vary from approximately 10 to over 50%. SP leads to more substantial reductions, except for SO2. The actual achievable reductions will be lower because only a fraction of base engine usage will be replaced by APUs, SP, or both. Recommendations are made for reducing base engine fuel use and emissions, accounting for variability in fuel use and emissions reductions, and further work to quantify real-world avoided fuel use and emissions.  相似文献   

8.
Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.  相似文献   

9.
Large auxiliary engines operated on ocean-going vessels in transit and at berth impact the air quality of populated areas near ports. This paper presents new information on the comparison of emission ranges from three similar engines and the effectiveness of three control technologies: switching to cleaner burning fuels, operating in the low oxides of nitrogen (NOx) mode, and selective catalytic reduction (SCR). In-use measurements of gaseous (NOx, carbon monoxide [CO], carbon dioxide [CO2]) and fine particulate matter (PM2.5; total and speciated) emissions were made on three auxiliary engines on post-PanaMax class container vessels following the International Organization for Standardization-8178-1 protocol. The in-use NOx emissions for the MAN B&W 7L32/40 engine family vary from 15 to 21.1 g/kW-hr for heavy fuel oil and 8.9 to 19.6 g/kW-hr for marine distillate oil. Use of cleaner burning fuels resulted in NOx reductions ranging from 7 to 41% across different engines and a PM2.5 reduction of up to 83%. The NOx reductions are a consequence of fuel nitrogen content and engine operation; the PM2.5 reduction is attributed to the large reductions in the hydrated sulfate and organic carbon (OC) fractions. As expected, operating in the low-NOx mode reduced NOx emissions by approximately 32% and nearly doubled elemental carbon (EC) emissions. However, PM2.5 emission factors were nearly unchanged because the EC emission factor is only approximately 5% of the total PM2.5 mass. SCR reduced the NOx emission factor to less than 2.4 g/kW-hr, but it increased the PM2.5 emissions by a factor of 1.5-3.8. This increase was a direct consequence of the conversion of sulfur dioxide to sulfate emissions on the SCR catalyst. The EC and OC fractions of PM2.5 reduced across the SCR unit.  相似文献   

10.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

11.
The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30-35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2-4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4(2-) NO3-, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3-, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

12.
Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality, human health, visibility, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging, as no agency-certified method is available. In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of “extractive” and “optical remote-sensing” (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines. Three classes of military engines were investigated; these include T56, TF33, and T700 & T701C types of engines, which consume 70–80% of the military aviation fuel each year. JP-8 and Fischer–Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels. It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines. Elemental analysis indicated little metals were present on particles, while most of the materials on the exhaust particles were carbon and sulfate based. Alkanes, carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, formaldehyde, ethylene, acetylene and propylene were detected. The last five species were most noticeable only under low engine power. The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data. Nevertheless, the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume, which warrants further development. The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009).  相似文献   

13.
Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter), and PM10 (PM < or = 10 microm in aerodynamic diameter). Cropland burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (< 1%) compared with the CH4 emissions from other agricultural sources, specifically enteric fermentation, manure management, and rice cultivation.  相似文献   

14.
The Fresno Supersite intends to 1) evaluate non-routine monitoring methods, establishing their comparability with existing methods and their applicability to air quality planning, exposure assessment, and health effects studies; 2) provide a better understanding of aerosol characteristics, behavior, and sources to assist regulatory agencies in developing standards and strategies that protect public health; and 3) support studies that evaluate relationships between aerosol properties, co-factors, and observed health end-points. Supersite observables include in-situ, continuous, short-duration measurements of 1) PM2.5, PM10, and coarse (PM10 minus PM2.5) mass; 2) PM2.5 SO4(-2), NO3-, carbon, light absorption, and light extinction; 3) numbers of particles in discrete size bins ranging from 0.01 to approximately 10 microns; 4) criteria pollutant gases (O3, CO, NOx); 5) reactive gases (NO2, NOy, HNO3, peroxyacetyl nitrate [PAN], NH3); and 6) single particle characterization by time-of-flight mass spectrometry. Field sampling and laboratory analysis are applied for gaseous and particulate organic compounds (light hydrocarbons, heavy hydrocarbons, carbonyls, polycyclic aromatic hydrocarbons [PAH], and other semi-volatiles), and PM2.5 mass, elements, ions, and carbon. Observables common to other Supersites are 1) daily PM2.5 24-hr average mass with Federal Reference Method (FRM) samplers; 2) continuous hourly and 5-min average PM2.5 and PM10 mass with beta attenuation monitors (BAM) and tapered element oscillating microbalances (TEOM); 3) PM2.5 chemical speciation with a U.S. Environmental Protection Agency (EPA) speciation monitor and protocol; 4) coarse particle mass by dichotomous sampler and difference between PM10 and PM2.5 BAM and TEOM measurements; 5) coarse particle chemical composition; and 6) high sensitivity and time resolution scalar and vector wind speed, wind direction, temperature, relative humidity, barometric pressure, and solar radiation. The Fresno Supersite is coordinated with health and toxicological studies that will use these data in establishing relationships with asthma, other respiratory disease, and cardiovascular changes in human and animal subjects.  相似文献   

15.
Source identification of atlanta aerosol by positive matrix factorization   总被引:3,自引:0,他引:3  
Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles < or = 2.5 microm in aerodynamic diameter) samples (PM2.5), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 microm in aerodynamic diameter) samples (PM10-2.5). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4(2-) -rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO(3-) -rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4(2-) -rich and NO(3-) -rich secondary aerosols were associated with NH(4+). The SO4(2-) -rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO(3-)-rich secondary aerosol (16%), SO4(2-) -rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

16.
In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM2.5 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM2.5), NO3- (23-26% of PM10 and 28-41% of PM2.5), SO4- (6-11% of PM10 and 9-18% of PM2.5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM2.5). On an annual average basis, PM2.5 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 micrograms/m3 at Anaheim to 76.8 micrograms/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 micrograms/m3 at Anaheim to 39.8 micrograms/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.  相似文献   

17.
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers.  相似文献   

18.
The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost.  相似文献   

19.
This research is one of the largest studies of biodiesel in both on-road and off-road uses. The testing was conducted for the military and encompassed a wide range of application types including two medium-duty trucks, two Humvees, a heavy heavy-duty diesel truck, a bus, two stationary backup generators (BUGs), a forklift, and an airport tow vehicle. The full range of fuels tested included a California ultra-low sulfur diesel (ULSD) fuel, different blend ratios of two different yellow-grease biodiesels and one soy-based biodiesel, JP-8, and yellow-grease biodiesel blends with two different NOx reduction additives. The B20-YGA, B20-YGB, and B20-Soy did not show trends relative to ULSD that were consistent over all applications tested. Higher biodiesel blends were tested on only one vehicle, but showed a tendency for higher total hydrocarbons (THC) and carbon monoxide (CO) emissions and lower particulate matter (PM) emissions. The JP-8 showed increases in THC and CO relative to the ULSD.  相似文献   

20.
Boiler briquette coal versus raw coal: Part I--Stack gas emissions   总被引:1,自引:0,他引:1  
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号