首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
Often, there is a non-linear relationship between atmospheric dissolved inorganic nitrogen (DIN) input and DIN leaching that is poorly captured by existing models. We present the first application of the non-parametric classification and regression tree approach to evaluate the key environmental drivers controlling DIN leaching from European forests. DIN leaching was classified as low (<3), medium (3-15) or high (>15 kg N ha−1 year−1) at 215 sites across Europe. The analysis identified throughfall NO3 deposition, acid deposition, hydrology, soil type, the carbon content of the soil, and the legacy of historic N deposition as the dominant drivers of DIN leaching for these forests. Ninety four percent of sites were successfully classified into the appropriate leaching category. This approach shows promise for understanding complex ecosystem responses to a wide range of anthropogenic stressors as well as an improved method for identifying risk and targeting pollution mitigation strategies in forest ecosystems.  相似文献   

2.
Abstract

Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO2 emissions declined by 60% to 340,000 short tons (t) and total NOx emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NOx emissions, and improvements in kraft recovery furnace operations.  相似文献   

3.
To assess changes as a result of reduced acidifying deposition, water chemistry data from 68 Dutch moorland pools were collected during the periods 1983-1984 and 2000-2006. Partial recovery was observed: nitrate- and ammonium-N, sulphur and aluminium concentrations decreased, while pH and alkalinity increased. Calcium and magnesium concentrations decreased. These trends were supported by long term monitoring data (1978-2006) of four pools. Increased pH correlated with increases in ortho-phosphate and turbidity, the latter due to stronger coloration by organic acids. Increased ortho-phosphate and turbidity are probably the result of stronger decomposition of organic sediments due to decreased acidification and may hamper full recovery of moorland pool communities. In addition to meeting emission targets for NOx, NHx and SOx, restoration measures are still required to facilitate and accelerate recovery of acidified moorland pools.  相似文献   

4.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

5.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

6.
Increased reactive nitrogen (Nr) deposition due to expansion of agro-industry was investigated considering emission sources, atmospheric transport and chemical reactions. Measurements of the main inorganic nitrogen species (NO2, NH3, HNO3, and aerosol nitrate and ammonium) were made over a period of one year at six sites distributed across an area of ∼130,000 km2 in southeast Brazil. Oxidized species were estimated to account for ∼90% of dry deposited Nr, due to the region’s large emissions of nitrogen oxides from biomass burning and road transport. NO2-N was important closer to urban areas, however overall HNO3-N represented the largest component of dry deposited Nr. A simple mathematical modeling procedure was developed to enable estimates of total Nr dry deposition to be made from knowledge of NO2 concentrations. The technique, whose accuracy here ranged from <1% to 29%, provides a useful new tool for the mapping of reactive nitrogen deposition.  相似文献   

7.
This study investigates ammonium, nitrate, and sulfate (NH4+, NO3?, and SO42?) in size-resolved particles (particularly nano (PM0.01–0.056)/ultrafine (PM0.01–0.1)) and NOx/SO2 collected near a busy road and at a rural site. The average (mass) cumulative fraction of secondary inorganic aerosols (SO42?+NO3?+NH4+) in nano or ultrafine particles at the roadside was found to be three to four times that at the rural site. The above three secondary inorganic aerosol species were present in similar cumulative fractions in particles of size 1–18 μm at both sites; however, dissimilar fractions were observed for Cl?, Na+, and K+. The nitrogen ratios (NRs: NR = NO3??N/(NO3??N + NO2–N)), sulfur ratios (SRs: SR = SO42??S/(SO42??S + SO2–S)), dNR/DP (derivative of NR with respect to DP (particle diameter)), and dSR/DP (derivative of SR with respect to DP) at the roadside were higher than those at the rural site for nano/ultrafine particles. At both sites (particularly the roadside), the nanoparticles had significantly higher dNR/DP and dSR/DP values than differently sized particles, implying that NO3?/SO42? (from NO2/SO2 transformation or NO3?/SO42? deposition) were present on these particles.  相似文献   

8.
The chemical composition of pollutant species in precipitation sampled daily or weekly at 10 sites in Ireland for the five-year period, 1994–1998, is presented. Sea salts accounted for 81% of the total ionic concentration. Approximately 50% of the SO42− in precipitation was from sea-salt sources. The proportion of sea salts in precipitation decreased sharply eastwards. In contrast, the concentration of NO3 and the proportion of non-sea-salt SO42− increased eastwards reflecting the closer proximity to major emission sources. The mean (molc) ratio of SO42−:NO3 was 1.6 for all sites, indicating that SO42− was the major acid anion.The spatial correlation between SO42−, NO3 and NH4+ concentrations in precipitation was statistically significant. The regional trend in NO3 concentration was best described by linear regression against easting. SO42− concentration followed a similar pattern. However, the regression was improved by inclusion of elevation. Inclusion of northing in the regression did not significantly improve any of the relationships except for NH4+, indicating a significant increase in concentrations from northwest to southeast.The spatial distribution of deposition fluxes showed similar gradients increasing from west and southwest to east and northeast. However, the pattern of deposition shows the influence of precipitation volume in determining the overall input. Mean depositions of sulphur and nitrogen in precipitation were ≈30 ktonnes S yr−1 and 48 ktonnes N yr−1 over the five-year period, 1994–1998, for Ireland.Least-squares linear regression analysis indicated a slight decreasing trend in precipitation concentrations for SO42− (20%), NO3 (13%) and H+ (24%) and a slight increasing trend for NH4+ (15%), over the period 1991–1998.  相似文献   

9.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

10.
This study examined the influence of distance to the forest edge, forest type, and time on Cl, SO42−, NO3, and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl, SO42−, and NO3: the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.  相似文献   

11.
The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha−1 yr−1 as NH4NO3 to the ambient 9 kg N ha−1 yr−1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g−1.  相似文献   

12.
Modeling recovery of Swedish ecosystems from acidification   总被引:2,自引:0,他引:2  
Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites. While the long-term goal is to protect 95% of the area, implementation of the Gothenburg protocol will protect approximately 75% of forest soils in the long term. After 2030, recovery will be very slow and involve only a limited geographical area. If there had been no emission reductions after 1980, 87% of the forest area would have unwanted soil status in the long term. In 1990, approximately 17% of all Swedish lakes unaffected by agriculture received an acidifying deposition above critical load. This fraction will decrease to 10% in 2010 after implementation of the Gothenburg protocol. The acidified lakes of Sweden will recover faster than the soils. According to the MAGIC model the median pre-industrial ANC of 107 microeq L(-1) in acid sensitive lakes decreased to about 60 microeq L(-1) at the peak of the acidification (1975-1990) and increases to 80 microeq L(-1) by 2010. Further increases were small, only 2 microeq L(-1) between 2010 and 2040. Protecting 95% of the lakes will require further emission reductions below the Gothenburg protocol levels. More than 7000 lakes are limed regularly in Sweden and it is unlikely that this practice can be discontinued in the near future without adverse effects on lake chemistry and biology.  相似文献   

13.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

14.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

15.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

16.
The characteristics of water-soluble inorganic ions (WSIIs) during a winter period in a suburb of Xi'an, China, were investigated. Our results show that the total mass concentration of the dominant WSIIs (8) was 91.27 µg m–3, accounting for 50.1% of the total mass concentration of PM2.5 (particulates with a size of 2.5 µm or less). Secondary inorganic aerosols (SO42?, NO3? and NH4+) were the most abundant ions, accounting for up to 95.12% of the total ions. By using the anion and cation equivalence ratio method, PM2.5 was shown to have weak alkalinity, and the chemical forms of WSIIs were mainly (NH4)2SO4 and NH4NO3. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) suggested that larger proportions of SO42? and NO3? were formed by gas-phase SO2 and NO2 in the sampling site. Ratio analysis also indicated that anthropogenic sources significantly contributed to WSII pollution. Among the anthropogenic sources, fixed pollution sources were found to be dominant over mobile sources.  相似文献   

17.
Contribution of pollution from different types of sources in Jamshedpur, the steel city of India, has been estimated in winter 1993 using two approaches in order to delineate and prioritize air quality management strategies for the development of region in an environmental friendly manner. The first approach mainly aims at preparation of a comprehensive emission inventory and estimation of spatial distribution of pollution loads in terms of SO2 and NO2 from different types of industrial, domestic and vehicular sources in the region. The results indicate that industrial sources account for 77% and 68% of the total emissions of SO2 and NO2, respectively, in the region, whereas vehicular emissions contributed to about 28% of the total NO2 emissions. In the second approach, contribution of these sources to ambient air quality levels to which the people are exposed to, was assessed through air pollution dispersion modelling. Ambient concentration levels of SO2 and NO2 have been predicted in winter season using the ISCST3 model. The analysis indicates that emissions from industrial sources are responsible for more than 50% of the total SO2 and NO2 concentration levels. Vehicular activities contributed to about 40% of NO2 pollution and domestic fuel combustion contributed to about 38% of SO2 pollution. Predicted 24-h concentrations were compared with measured concentrations at 11 ambient air monitoring stations and good agreement was noted between the two values. In-depth zone-wise analysis of the above indicates that for effective air quality management, industrial source emissions should be given highest priority, followed by vehicular and domestic sources in Jamshedpur region.  相似文献   

18.
Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996–2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO4 2−) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO4 2− deposition explained some of the long-term [DOC] variability at all sites.  相似文献   

19.
China, as a fast growing fossil-fuel-based economy, experiences increasing levels of air pollution. To tackle air pollution, China has taken the first steps by setting emission–reduction targets for nitrogen oxides (NOx) and sulphur dioxide (SO2) in the 11th and 12th Five Year Plans. This paper uses two models—the Energy–Environment–Economy Model at the Global level (E3MG) and the global Chemistry Transport Model pTOMCAT—to test the effects of these policies. If the policy targets are met, then the maximum values of 32 % and 45 % reductions below ‘business as usual’ in the monthly mean NOx and SO2 concentrations, respectively, will be achieved in 2015. However, a decrease in NOx concentrations in some highly polluted areas of East, North-East and South-East China can lead to up to a 10% increase in the monthly mean concentrations in surface ozone in 2015. Our study demonstrates an urgent need for the more detailed analysis of the impacts and designs of air pollution reduction guidelines for China.  相似文献   

20.
A goal of the acidic deposition control program in the United States has been to link emissions control policies, such as those mandated under Title IV of the US Clean Air Act Amendments (CAAA) of 1990, to improvements in air and water quality. Recently, several researchers have reported trends in the time series of pollutant data in an effort to evaluate the effectiveness of the CAAA in reducing the acidic deposition problem. It is well known that pollutant concentrations are highly influenced by meteorological and climatic variations. Also, spatial and temporal inhomogeneities in time series of pollutant concentrations, induced by differences in the data collection, reduction, and reporting practices, can significantly affect the trend estimates. We present a method to discern breaks or discontinuities in the time series of pollutants stemming from emission reductions in the presence of meteorological and climatological variability. Using data from a few sites, this paper illustrates that linear trend estimates of concentrations of SO2, aerosol SO42−, and precipitation-weighted SO42− and NO3 can be biased because of such complex features embedded in pollutant time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号