首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG)5 primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG)5-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish.  相似文献   

2.
Twelve hours integrated fine particles (PM2.5) and 24-h average size-segregated particles were collected to investigate the chemical characteristics and to determine the size distribution of ionic species during October–December 1999 in three cities of different urban scale; Chongju, Kwangju, and Seoul, Korea. Concentrations of 5-min PM2.5 black carbon (BC) and hourly criteria air pollutants (PM10, CO, NOx, SO2, and O3) were also measured using the Aethalometer and ambient air monitoring system, respectively.Highest PM2.5 mass concentrations at Chongju, Kwangju, and Seoul sites were 63.0, 77.9, and 143.7 μg m−3, respectively. For the time period when highest PM2.5 mass occurred, BC level out of PM2.5 chemical species was highest at both Chongju and Kwangju, and highest NO3 (23.6 μg m−3) followed by BC (23.1 μg m−3) were observed at Seoul site, indicating that highest PM2.5 pollution is closely associated with the traffic emissions. Strong relationships of Fe with BC and Zn at both Kwangju and Seoul sites support that the Fe and Zn measured there are originated partly from same source as BC, i.e. diesel traffics. However, it is suggested that the Fe measured at Chongju is most likely derived from dispersion of soil dust.The size distributions of SO42−, NO3, and NH4+ ionic species indicated similar unimodal distributions at all sampling sites. However, different unimodal patterns in the accumulation mode size range with a peak in the smaller size (0.28–0.53 μm, condensation mode) in both Kwangju and Seoul, and in the relatively larger size (0.53–1.0 μm, droplet mode) in Chongju, were found. The potassium ion under the study sites dominates in the fine mode, and its size distribution showed unimodal character with a maximum in the size range 0.56–1.0 μm.  相似文献   

3.
Size-resolved, 24-h aerosol samples were collected from June–July 2001 by means of an Andersen high-volume cascade impactor. Sampling was conducted in a central avenue (Patission) characterised by heavy traffic, 21 m above street level, in the Athens city centre. Samples were analysed by atomic absorption spectrometry and gas chromatography to determine the size distribution of nine metallic elements (Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) and n-alkanes (with carbon numbers in the range 18–35). The aerosol mass median diameter (MMD) was calculated by means of probit analysis on the cumulative mass concentration size distribution for each metals and n-alkane. The total n-alkane mass concentration (TNA) in total suspended particles (TSP) ranged from 72 to 1506 ng m−3 while the total metal concentration ranged from 5.6 to 28.6 μg m−3. The results showed that metals such as Cd, V and Ni are characterised by a MMD <1 μm, while the MMD for Pb and Mn are ∼1 μm. Such metals are generally considered to have anthropogenic emission sources. Other metals such as Al, Fe, Cu and Cr were found to have MMD=2–6 μm, which generally originate from soil dust or mechanical abrasion processes. The Carbon number profile of n-alkane compounds showed a strong anthropogenic source with only a minor biogenic influence. The concentration of most n-alkanes was characterised by high variability during the sampling period, in contrast to the concentration of most trace metals. Most n-alkanes had a unimodal size distribution with MMD=1–2 μm similar to those of some trace metals (Pb, Mn), which originate mostly from vehicle emissions. This is a strong indication that these species have a common source. Finally, gas–particle partitioning of n-alkanes was also examined for different particle sizes by means of the relationship between the partition constant Kp and saturation vapour pressure (pL0) as proposed by current sorption models.  相似文献   

4.
A monitoring campaign was performed in Santiago de Chile during a winter month of 2003 and 2006 (July) using several instruments to measure the size distribution of particulate material. For the first time, the size distribution of ultrafine particles was measured in Santiago, and an estimation of its sources was done by analyzing its temporal variation. The study was performed in three sites; one of them is located in the eastern part of Santiago, a sector with low particle concentration and about 100 m from a busy street. The other site is located in the western part, which is the sector that has the highest concentration of fine and coarse particle matter during winter, also located far from a street. The third site is located within 5 m from the busiest street in Santiago. In all stations traffic is the dominating source for fine and ultrafine particles and the size distribution is peaked towards 60–100 nm (soot mode). Only in the site near the street, it is possible to see a clear peak towards smaller sizes (10–30 nm). The size distribution measurements presented here indicate that aerosol dynamics play a more important role for the Santiago case as compared to cleaner cities in Europe. Changes in the particle size during different hours of the day reflect both variations in meteorological mixing conditions as well as effects of aerosol dynamic processes such as coagulation, condensation and dry deposition. A relative increase in the number of the larger ultrafine particles (d ≥ 70 nm), as compared to the number of smaller particles (d < 70 nm) correlated with wind speed is an indication of pollution transport with aged particles from other parts of the city.  相似文献   

5.
We evaluated whether growth rates of six fish species correlated with PCB concentrations in a moderately-to-heavily polluted freshwater ecosystem. Using a large dataset (n = 984 individuals), and after accounting for growth effects related to fish age, habitat, sex, and lipids, growth correlated significantly, but positively with lipid-corrected PCB concentrations for 4 of 6 species. Remaining species showed no correlations between growth and PCBs. Comparisons with regional, lentic growth averages for four species confirmed growth was on par and in three of four cases higher than regional averages in the PCB-polluted ecosystem. We conclude that for these species, at the range of concentrations examined, these PCBs do not exert negative impacts on growth. Rather, factors often cited as influential to growth were also driving growth trends in this study. Future studies that evaluate whether pollution affects growth must account for major growth drivers prior to attributing growth differentials to pollution alone.  相似文献   

6.
Ambient particulate chemical composition data acquired from samples collected using a three-stage Davis Rotating-drum Universal-size-cut Monitoring (DRUM) impactor in Detroit, MI, between February and April 2002 were analyzed through the application of a three-way factor analysis model. PM2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) was collected by a DRUM impactor with 3-h time resolution and three size modes (2.5 μm>Dp>1.15 μm, 1.15 μm>Dp>0.34 μm and 0.34 μm>Dp>0.1 μm). A novel three-way factor analysis model was applied to these data where the source profiles are a three-way array of size, composition and source while the contributions are a matrix of sample by source. Nine factors were identified: road salt, industrial (Fe+Zn), cloud processed sulfate, two types of metal works, road dust, local sulfate source, sulfur with dust, and homogeneously formed sulfate. Road salt had high concentrations of Na and Cl. Mixed industrial emissions are characterized by Fe and Zn. The cloud processed sulfate had a high concentration of S in the intermediate size mode. The first metal works represented by Fe in all three size modes and by Zn, Ti, Cu, and Mn. The second included a high concentration of small size particle sulfur with intermediate size Fe, Zn, Al, Si, and Ca. Road dust contained Na, Al, Si, S, K, and Fe in the large size mode. The local and homogeneous sulfate factors show high concentrations of S in the smallest size mode, but different time series behavior in their contributions. Sulfur with dust is characterized by S and a mix of Na, Mg, Al, Si, K, Ca, Ti, and Fe from the medium and large size modes. This study shows that the utilization of time and size resolved DRUM data can assist in the identification of sources and atmospheric processes leading to the observed ambient concentrations.  相似文献   

7.
The study reports the accumulation, distribution and metabolism of technical endosulfan in Jenynsia multidentata. Adult females were exposed to acute sublethal concentrations (0.072, 0.288 and 1.4 μg L−1). After 24 h, fish were sacrificed and gills, liver, brain, intestine and muscle were removed. Results show that both isomers of technical-grade endosulfan (α- and β-) are accumulated in fish tissues and biotransformation to endosulfan sulfate occurs at all concentrations tested. Significantly differences in endosulfan accumulation were only found at 1.4 μg L−1 but not between the lowest concentrations. However a similar distribution pattern was observed at all exposure levels where liver, intestine and brain had the highest levels of α-, β-endosulfan and endosulfan sulfate. Moreover, liver and brain showed the highest endosulfan sulfate:α-endosulfan ratios due to high biotransfomation capacity. J. multidentata demonstrated to be a sensitive species under exposure to technical endosulfan and, therefore, could be used to assess aquatic pollution.  相似文献   

8.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

9.
Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with size selective (PM10 and PM2.5) inlets. Mean particle number counts at three sites range from 2.86×104 to 9.60×104 cm-3. A traffic-influenced location showed a substantially higher ratio of particle number to PM10 mass than a nearby background location despite being some 70 m from the roadway. Operating two condensation nucleus counters in tandem to determine particles in the 3–7 nm size range by difference showed signficant numbers of particles in this range, apparently related to homogeneous nucleation processes. Measurements with the Scanning Mobility Particle Sizer showed a clear difference between roadside size distributions and those at a nearby background location with an additional mode in the roadside samples below 10 nm diameter. Particle number counts were found to show a significant linear correlation with PM10 mass (r2=0.44; n=44 for 24 h data at an urban background location), although during one period of high pollution a curvilinear relationship was found. Measurements of the diurnal variation in PM10 mass, particle number count and Fuchs surface area show the same general pattern of behaviour of the three variables, explicable in terms of vehicle emission source strength and atmospheric dispersion, although the surface area growth was out of phase with the particle number and mass. It appears that particle number gives the clearest indication of recent road traffic emissions.  相似文献   

10.
Aerosol backscatter measurements from a Vaisala CL31 ceilometer are compared directly with a co-located 532/1064 nm lidar in order to validate the CL31 for remote sensing of vertical aerosol structure. The cases examined include a significant aerosol event (biomass burning), which by virtue of its vertical extent, provides a robust measure of the vertical range of the ceilometer for aerosol applications. A second case is presented when the instruments were separated in order to illustrate the utility of a network of such instruments for elucidating spatial patterns in aerosol distribution and the advection of elevated pollutant layers. When co-located, the instruments show remarkable agreement and indicate that the CL31 can detect aerosol layers up to 3000 m AGL in ideal conditions (at night and with high aerosol concentrations as found in biomass burning or dust plumes). When separated, multiple instruments provide an opportunity to examine advection of pollutant layers as well as their evolution. This suggests that installation of a ceilometer network would provide a cost-effective means of examining three-dimensional aspects of regional air quality as well as distinguishing between regional and local sources of pollution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号