首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
李亚峰  高颖 《环境工程学报》2015,9(3):1233-1237
实验研究主要影响因素对超声波/Fenton试剂处理苯酚废水效果的影响,确定工艺参数。以人工配制的模拟苯酚废水为实验水样,通过静态实验研究p H值、Fe SO4·7H2O投加量、H2O2投加量和超声时间对苯酚和COD去除率的影响。研究结果表明,对于苯酚浓度为200 mg/L,COD为476.6 mg/L苯酚废水,在实验用水量为1 000 m L,p H值为6,Fe SO4·7H2O投加量为800 mg/L,H2O2投加量为Qth,超声时间为30 min的条件下,苯酚去除率可达到92.27%,COD去除率可达到82.48%,处理后苯酚浓度为14.80 mg/L,COD为83.50 mg/L。p H值、Fe SO4·7H2O投加量、H2O2投加量和超声时间对超声/Fenton工艺处理苯酚废水均有较显著地影响,工程应用时应给予足够的重视。  相似文献   

2.
研究了1%和10%(V/V)模拟正丙醇废水在UV/TiO2体系、UV/H2O2体系、Fe2+/H2O2体系和UV/TiO2/Fe2+/H2O2体系等4种工艺条件下的降解动力学过程,对比了降解动力学特点及工艺参数对动力学常数的影响,优化工艺参数。结果表明,UV/TiO2体系和Fe2+/H2O2体系的降解过程可分为零级反应阶段和一级反应阶段,转折点分别在反应开始后2 h和氧化剂浓度为6.7 g/L,UV/H2O2体系和UV/TiO2/Fe2+/H2O2体系分别符合零级反应和一级反应规律;相同工艺参数条件下,6 h反应后,组合工艺UV/TiO2/Fe2+/H2O2体系在处理效率达85%,比前3个体系分别高52.0%、8.3%和32.0%,与UV/TiO2体系和Fe2+/H2O2体系的处理效率之和持平,其协同效应提高了速率常数,在目标物浓度降低时依然可维持较高降解速率。而目标物浓度提高10倍后,UV能量利用率提高35.5倍,氧化剂用量是Fe2+/H2O2体系的1/7.1。  相似文献   

3.
采用铁炭微电解-Fenton联合工艺深度处理制药废水生化出水,探讨了初始pH、曝气量、反应时间等因素对微电解出水Fe2+和Fe3+变化规律、COD降解速率以及后续Fenton氧化效果的影响,为优化微电解-Fenton氧化联合工艺提出了微电解间歇加酸的理论。间歇加酸可提高微电解系统中COD降解速率和Fe2+含量,使后续Fenton氧化无需投加FeSO4·7H2O即可达到较好的COD去除效果。结果表明,当初始pH=2.5,曝气量为0.6 m3/h,间歇加酸30 min/次,微电解反应2 h,出水投加1 mL/L的H2O2进行Fenton氧化2 h,COD总去除率可达81.33%;间歇加酸30 min/次可将微电解反应2 h出水Fe2+浓度从50 mg/L提高至151 mg/L,COD降解速率从10.6 mg COD/(L·h)提高至22.2 mg COD/(L·h)。  相似文献   

4.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

5.
电-Fenton法预处理干法腈纶生产废水   总被引:2,自引:0,他引:2  
以Ti金属网为阴极,Ti基RuO2涂层形稳电极为阳极,采用外加H2O2和Fe2+的方式,研究了电-Fenton氧化预处理干法腈纶生产废水的工艺,考察了H2O2投加量、Fe2+投加量、pH值和电流强度等因素对污染物降解过程的影响,分析了废水可生化性和污染物变化规律。结果表明,电-Fenton法可以有效降解废水中有机污染物,使废水COD迅速降低,在初始pH值为3.0,Fe2+投加量为5.0 mmol/L,H2O2投加量为60.0 mmol/L,电流强度0.2 A的条件下,反应120 min后COD去除率可以达到44.0%以上;反应过程中H2O2的投加方式对电-Fenton法的处理效果具有明显影响,H2O2分6次投加可以使COD去除率由一次性投加时的44.8%提高至54.1%;处理后废水的BOD5/COD由0.29升高至0.68;GC-MS结果表明,经电-Fenton法预处理后,废水中多数芳香族化合物和特征污染物能被有效降解。  相似文献   

6.
净化水是经过一定预处理的石化废水,具有很高的回用价值,为此采用生化-Fenton联合工艺对净化水进行了处理,研究了初始pH、反应温度、H2O2与Fe2+的摩尔投加比、投加量和反应时间等因素对废水COD去除率的影响。结果表明,Fenton氧化反应可有效去除生化处理出水中的COD,在H2O2(30%)投加量为6.34 m L/L,H2O2与Fe2+的摩尔投加比为5∶1,pH值为4,温度30℃,反应时间2h条件下,废水COD的去除率可达79.7%。GC-MS分析结果表明,Fenton氧化反应对难降解有机污染物具有较好的去除效果,同时可有效提高废水的可生化性,B/C比最大可提升至0.58,氧化出水经生化处理后的剩余COD可降至77.9 mg/L,达到工业回用水标准。  相似文献   

7.
采用赤泥吸附协同Fenton法处理焦化废水,两者协同处理对COD的去除率高于其单独处理之和.考察了赤泥投加量、初始pH值、反应温度、H2O2浓度和Fe2+浓度等因素对降解效果的影响,实验结果表明,在20 g/L的赤泥、初始pH=3、80 mmol/L的H2O2、224 mg/L的Fe2+的最佳条件下,经过120 min...  相似文献   

8.
利用芬顿试剂(Fenton)氧化预处理杀螟丹农药废水,分别考察了H2O2与Fe SO4·7H2O投加量、初始p H、反应时间、温度和摇床转速对Fenton试剂处理杀螟丹废水的影响。结果表明,杀螟丹废水初始COD为676.8 mg/L时,取废水样100 m L,优化反应条件为Fenton试剂的用量1 g Fe SO4·7H2O+4 m L H2O2,初始p H值为3,搅拌强度为160 r/min的摇床转速,反应温度25℃,反应时间60 min。在优化反应条件下COD的去除率达到83.9%。通过Fenton降解,废水可生化性BOD5/COD从0.0745~0.0747上升至0.9066~0.9228,可生化性大幅提高,为后续生化处理创造了条件。考虑到运用于工业废水处理中经济成本等实际问题,建议选取Fenton试剂的用量0.5 g Fe SO4·7H2O+1 m L H2O2,COD去除效率能达到65.5%。  相似文献   

9.
Fenton氧化法深度处理甲醛废水   总被引:1,自引:0,他引:1  
采用Fenton氧化法深度处理经生化降解后的甲醛废水,结果表明,Fenton氧化法深度处理甲醛废水是可行的,在合适的反应条件下,降解初始COD为150 mg/L左右的甲醛废水,COD去除率达30%以上;Fe2+与H2O2的投加比例、投加量及投加方式、反应温度、pH、反应时间对处理效果都有不同程度的影响。  相似文献   

10.
本实验采用光-Fenton法处理电镀添加剂生产废水,探讨了反应时间、H2O2投加量、FeSO4.7H2O投加量、pH、草酸投加量和TiO2等因素对COD去除效果的影响。结果表明,光-Fenton法对COD的降解率达到了94.3%。并得出该方法的最佳操作条件:反应时间为60 min,pH=4,H2O2投加量为80 mL/L,FeSO4.7H2O投加量为6 g/L,Fe2+和H2O2的摩尔比为1∶36,草酸的投加量为12 g/L,TiO2投加量为1.0 g/L。  相似文献   

11.
二甲基亚砜(DMSO)废水因其COD高、可生化性差的特性而较难处理。本实验以采用硫酸二甲酯法生产DMSO的某化工厂废水为研究对象,设计并建立了组合式光催化氧化装置联合水解酸化+MBR工艺的中试系统,探讨了组合式光催化氧化装置、氧化剂投加量、pH、反应时间和水力停留时间对系统处理效果的影响。结果表明,组合式光催化氧化装置可有效提高DMSO废水的可生化性。最优工艺参数为:按H2O2与原水COD质量浓度比为2∶1投加H2O2,在pH值为4、反应时间为6 h、水力停留时间为4 h的条件下,该系统对原水COD(5 000 mg/L)去除率大于98%,出水COD达到《污水综合排放标准》(GB 8978-1996)一级要求。  相似文献   

12.
Fenton-混凝法处理苯胺废水   总被引:1,自引:1,他引:0  
农药生产过程中产生的苯胺废水,COD浓度高、生物毒性强、可生化性差,一般生化方法很难处理。研究了Fenton与PAC联用处理苯胺废水。结果表明,Fenton氧化处理苯胺废水在最佳条件为pH=6、m(H2O2)/m(COD)=1.8、n(H2O2)/n(Fe2+)=8时,COD和色度去除率分别为78.4%和92.3%。Fenton氧化后废水B/C值由0.037提高到0.324。最佳条件下联用PAC,在投加量为320 mg/L时COD与色度去除率分别为83.6%和94.8%,并且处理时间显著缩短,实际应用中可减少水力停留时间和构筑物体积。  相似文献   

13.
Fenton氧化对制浆造纸废水分子量及可生化性变化的影响   总被引:1,自引:0,他引:1  
以制浆造纸废水的初沉池出水为研究对象,对不同剂量的Fenton氧化试剂处理制浆造纸厂初沉废水的效果进行了研究,初沉废水中的分子量大于10 000的有机污染物含量占到83%,废水可生化性较差;在Fe2+与H2O2的摩尔比为1∶5,废水pH为3.5的条件下,H2O2(30%)投加量小于3.25 mL/L时,Fenton试剂的氧化效率更高;H2O2(30%)投加量为6.50 mL/L时,废水中污染物的去除率更高,其中废水COD的去除率为79.5%,AOX的去除率为75.3%,色度去除率为97.5%,同时处理后废水中分子量在500~3 000之间的有机物含量占到82.98%,废水的BOD5/COD值提高到0.56。Fenton氧化作为前置技术处理制浆造纸废水,可以降低废水中的有机物分子量,减少废水的生物毒性,增加废水生物降解性,有助于后续生物处理的正常运行。  相似文献   

14.
Fenton氧化与铁炭微电解组合预处理DMF废水   总被引:1,自引:0,他引:1  
对COD表征模拟废水中DMF去除率的可行性进行了探讨。在此基础上,分别对铁炭微电解、Fenton氧化-铁炭微电解和铁炭微电解-Fenton氧化组合工艺对DMF废水的处理效果进行分析,结果表明,Fenton氧化-铁炭微电解工艺的处理效果较好。在pH=5,反应时间为1 h,FeSO4·7H2O投加量为1 000 mg/L、H2O2投加量为2.67 mL/L和不曝气的最佳反应条件下,Fenton氧化-铁炭微电解工艺对实际废水和废液中COD的去除率分别达到66.67%和72.22%,从而验证了该工艺处理DMF废水的可行性。此外,Fenton氧化处理DMF废水过程实际上是将酰胺基团和羰基的不饱和双键氧化分解的过程。  相似文献   

15.
絮凝-Fenton试剂氧化处理印染废水   总被引:1,自引:0,他引:1  
采用Fenton试剂对某染袜厂2种印染废水(印染红和印染蓝)进行处理。考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对印染废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30 min、双氧水(30%)投加量4 mL/L、硫酸亚铁投加量300 mg/L、pH值为4左右。在最佳条件下,印染蓝废水经氧化处理后COD去除率大于80%,色度去除率95%以上;印染红废水需经絮凝预处理后再用Fenton试剂氧化处理,其脱色率达到了99.6%,COD去除率为91.2%,出水COD浓度为96 mg/L,可达标排放。  相似文献   

16.
以粉煤灰为载体,制备铁/粉煤灰负载型催化剂,并利用该催化剂催化H2O2氧化降解活性黄染料废水,探讨了H2O2投加量、催化剂投加量、染料初始浓度和初始pH值等因素对染料废水COD去除率和脱色率的影响。结果表明,当染料废水COD初始浓度为200 mg/L,初始pH值为1.7,投加0.5 g/100 mL催化剂及加入1.0 mL浓度为1.13 mol/L的H2O2溶液时,处理效果最好,此时染料废水的COD去除率和脱色率分别达到63%和99%,并且废水的可生化性得到很大的提高。利用该负载催化剂能够有效地减少活性黄染料废水中Fe3+的残留量。  相似文献   

17.
采用Fenton氧化-序批式膜生物反应器(SBMBR)组合工艺处理干法腈纶废水。结果表明,在废水初始pH值为3.0,H2O2投加量为90.0 mmol/L,Fe2+投加量为20.0 mmol/L,反应时间为2.0 h的条件下,Fenton氧化预处理对腈纶生产废水的COD去除率达到47.0%以上,COD由1 091 mg/L降至560 mg/L,废水的BOD5/COD由0.32升至0.69,废水的可生化性得到显著提高。Fenton处理出水与丙烯腈废水等比例混合后,采用SBMBR进行生化处理,在水力停留时间为24 h,90 min缺氧/150 min好氧交替运行的条件下,COD、NH4+-N和TN的平均去除率分别为71.7%、97.2%和47.4%,碳源不足是限制TN去除效果的主要影响因素。在无外加碳源的条件下,组合工艺处理后出水COD和NH4+-N浓度分别为117 mg/L和1.7 mg/L,出水水质可以稳定达到国家一级排放标准(GB8978-1996)。  相似文献   

18.
活性污泥法处理高钙废水中污泥特性的变化   总被引:3,自引:0,他引:3  
通过单级SBR法处理模拟高钙废水,研究了活性污泥法处理高钙废水的过程中钙离子对COD,MLVSS,MLSS,SVI,污泥增长速率,污泥形态结构及生物相的影响,揭示活性污泥法处理高钙废水的过程中污泥量巨大的原因。采用逐步增加钙离子浓度的方法,检测到在污泥培养期([Ca2+]=0 mg/L),COD去除率为98.1%,MLVSS和MLSS稳定在4 900~5 500mg/L,污泥增长速率为67 mg/(L·d),SVI为55~60 mL/g;在驯化处理期([Ca2+]=120~2 400 mg/L),COD去除率降至87.37%,MLVSS降至2 500 mg/L,MLSS增加至19 300 mg/L,污泥增长速率为212.31 mg/(L·d),SVI降至25 mL/g;在冲击期([Ca2+]=4 000 mg/L),COD去除率降至69.23%,MLVSS降至1 600 mg/L,MLSS迅速增加至24 200 mg/L,污泥增长速率为816.67 mg/(L·d),SVI降至14 mL/g。经显微镜观察发现,污泥絮体由松散变得密实,生物相由钟虫等指示性微生物变为不适应环境的胞囊结构。结果表明,随Ca2+浓度的增加,COD去除率下降,MLSS迅速增加,MLVSS和SVI急剧缩小,说明活性污泥中的活性微生物逐渐减少,而无机物组分逐渐增多;钙离子的加入促使系统碳酸平衡向右移动,使离子状态的钙大部分转化为难降解的碳酸盐,并附着于污泥絮体上,污泥绒粒被压缩,使污泥颗粒密实度及MLSS迅速增加,导致污泥排放量巨大。  相似文献   

19.
铁炭微电解/Fenton试剂预处理土霉素废水的研究   总被引:10,自引:3,他引:7  
研究了铁炭微电解/Fenton试剂法工艺对高浓度难生化处理的土霉素废水预处理效果.结果表明,当原水COD在6 000 mg/L、pH值为2.2时,铁炭微电解反应时间为80 min,铁炭微电解对原水COD的去除率>40%;铁炭微电解出水再投加220 mg/L的H2O2(30%)进行Fenton试剂法处理,常温下反应50 min对原水COD的去除率可提高到75%以上.铁炭微电解 Fenton试剂联合工艺的处理效果好、运行稳定、成本低廉,适宜对难降解的土霉素废水的预处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号