首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fast-flowing and highly turbid Lagaip River (0.5–10 g/L suspended solids) in the central highlands of Papua New Guinea receives mine-derived metal inputs in both dissolved and particulate forms. Nearest the mine, metal concentrations in suspended solids were 360, 9, 90, 740 and 1,300 mg/kg for As, Cd, Cu, Pb and Zn, while dissolved concentrations were 2.7, 0.6, 3.1, 0.1 and 25 μg/L, respectively. This creates a significant metal exposure source for organisms nearer the mine. However, because the Lagaip River is diluted by a large number of tributaries, the extent to which mine-derived metals may affect biota in the lower catchments is uncertain. To improve our understanding of the forms of potentially bioavailable metals entering the lower river system, we studied the partitioning and speciation of metals within the Lagaip River system. Dissolved and particulate metal concentrations decreased rapidly downstream of the mine due to dilution from tributaries. As a portion of the particulate metal concentrations, the more labile dilute acid-extractable forms typically comprised 10–30 % for As and Pb, 50–75 % for Cu and Zn, and 50–100 % for Cd. Only dissolved Cd, Cu and Zn remained elevated relative to the non-mine-impacted tributaries (<0.03, 0.5 and 0.3 μg/L), but the concentrations did not appreciably change with increasing dilution downriver. This indicated that release of Cd, Cu and Zn was likely occurring from the more labile metal phases of the mine-derived particulates. Chelex-labile metal analyses and speciation modelling indicated that dissolved copper and lead were largely non-labile and likely complexed by naturally occurring organic ligands, while dissolved cadmium and zinc were predominantly present in labile forms. The study confirmed that mine-derived particulates may represent a significant source of dissolved metals in the lower river system; however, comparison with water quality guidelines indicates the low concentrations would not adversely affect aquatic life.  相似文献   

2.
Mixture of metals and herbicides in rivers may pose relevant risks for the health of surrounding communities. Humans may be exposed to river pollution through intake of contaminated water and fish, as well as irrigated agricultural products. The aim of this study was to assess the human health risks of environmental exposure to metals and herbicides through water and fish intake in the Pardo River. Metals (Al, As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V, and Zn) were analyzed in river water and in edible fish. Herbicides (ametryn, atrazine, diuron, hexazinone, simazine, and tebuthiuron) were analyzed in river water. Seasonal variances were also studied. Aluminum, Cd, Cu, Mn, Pb, and Zn levels in river water were higher than the USEPA benchmarks. Non-carcinogenic risks due to pollutants mixture exposure were above the limit, and carcinogenic risks of As exposure were >10?6 in the sampling points during the rainy season. Metal levels in fish were lower than the Brazilian legislation and do not pose a threat to public health. Herbicides were detected in four sampling points, with atrazine concentrations (range 0.16–0.32 μg/L) below the Brazilian standard (2.0 μg/L), but above the European Union standard (0.1 μg/L). Considering the water supply needs of cities located in the Pardo River Basin and the persistence of metals and herbicides, the present study indicated that there was a seasonal influence on non-carcinogenic and carcinogenic risks to human health, especially in the rainy season. Studies for water treatment plants implantation should consider the risks of exposure to persistent substances, in order to protect the population.  相似文献   

3.
A field study was conducted to examine different physicochemical properties of water and various haematological and biochemical parametres of the fish Labeo rohita collected from the Ganga River (National river of India) at Varanasi district, India. The water was found to be greatly contaminated with a number of dissolved metals (Fe, Cr, Zn, Cu, Mn, Ni and Pb) whose concentrations were above the safe limits suggested by Bureau of Indian Standard (BIS 1991) for drinking water (Fe, 1,353.33 %; Cr, 456 %; Mn, 553.33 %; Ni, 4,490 % and Pb, 1,410 %). The metal accumulation in the fish blood was very high (Fe, 2,408 %; Cr, 956.57 %; Zn, 464.90 %; Cu, 310.57 %; Mn, 1,115.48 %) in comparison to the control fish maintained under strict quality control. Lower values of the various haematological parameters (total erythrocytes count, haemoglobin, haematocrit, mean corpuscular volume and O2-carrying capacity) in the river fish in comparison to the control indicate toxic manifestation exerted by the contaminated river water on the fish. The higher level of total leucocytes count further illustrates stressed condition of the river fish. The toxic impact of the Ganga water is also expressed in the fish by the presence of higher levels of cholesterol, glucose, elevated activities of the enzymes aspartate amino transferase and alanine amino transferase, and lowered protein concentration.  相似文献   

4.
In the current study, the bioaccumulation of essential and nonessential metals and related antioxidant activity were analyzed in three organs (muscle, gills, and liver) of herbivorous (HF) and carnivorous (CF) edible fish of Chenab River. The comparative analysis revealed a more heterogeneous accumulation of metals in the muscles of HF fish than that of CF fish [chromium (Cr, 3.4 μg g?1), cobalt (Co, 1.7 μg g?1), copper (Cu, 3 μg g?1), and iron (Fe, 45 μg g?1) versus Cr (1.3 μg g?1), Co (0.1 μg g?1), Cu (1.1 μg g?1), and Fe (33 μg g?1), respectively, P?<?0.001]. These results implied an organ-specific accumulation of metals at different trophic levels. According to logistic regression analysis, the bioaccumulation of metals had marked differences in HF and CF. The antioxidant activity was significantly related to the tissue type and the metals to which the organs are exposed to. The liver of CF fish had a higher activity of antioxidant superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and lipid peroxidase (LPO) than that of HF (P?<?0.05). LPO and guaiacol peroxidase (POD) in both groups were associated with a number of metals, but in HF, cadmium (Cd), Cr, Pb, and Zn were more related with the LPO and SOD activities. Moreover, Cd, Co, Fe, Pb, Ni, Cu, and Zn were above the permissible limits set by various agencies. In numerous cases, our results were even higher than those previously reported in the literature. The results provide an insight into the pollution pattern of Chenab River. These results may be helpful in the future to identify biomarkers of exposure in aquatic organisms.
Figure
?  相似文献   

5.
Caviar (fish roe of sturgeon) may contain high levels of contaminants. An inductively coupled plasma-optical emission spectrometer and a direct mercury analyzer were used to assess the contents of four heavy metals (Hg, Se, Sn, and Ba) in caviar of wild Persian sturgeon sea foods. The levels of Hg ranged from 1.39 to 1.50 μg?g?1, Se from 0.90 to 1.10 μg?g?1, Sn from 0.23 to 0.33, and Ba from 0.71 to 1.17 μg?g?1. Evaluation of these levels showed that except for Hg, the average concentrations of other metals are significantly lower than adverse level for the human consumption when compared with Food and Agricultural Organization of the United Nations and World Health Organization permissible limits. Therefore, their contribution to the total body burden of these heavy metals can be considered as negligibly small given that caviar is a luxury product.  相似文献   

6.
Phyu YL  Warne MS  Lim RP 《Chemosphere》2005,58(9):1231-1239
Acute (10 day) semi-static toxicity tests in which the midge, Chironomus tepperi, were exposed to atrazine and molinate were conducted in laboratory water and in river water, in the absence and presence of sediment. The bioavailability measured as median lethal concentrations (LC50) and 95% fiducial limits (FLs) of atrazine to C. tepperi in laboratory water in the absence and presence of sediment were 16.6 (14.3-19.4) and 21.0 (18.2-24.1) mg l(-1), respectively while the corresponding values in river water were 16.7 (14.7-19.0) and 22.7 (20.3-25.4) mg l(-1), respectively. For molinate, the LC50 and FL values in laboratory water in the absence and presence of sediment were 8.8 (6.8-11.4) and 14.3 (12.4-16.4) mg l(-1), respectively and the corresponding values in river water were 9.3 (7.6-11.3) and 14.5 (12.4-16.9) mg l(-1), respectively. Atrazine has low toxicity (LC50 > 10 mg l(-1)) while molinate has moderate toxicity (1 mg l(-1) < LC50 < 10 mg l(-1)) to C. tepperi. River water did not significantly (P > 0.05) reduce the bioavailability of either chemical to C. tepperi. However, the presence of sediment did significantly (P < 0.05) reduce the bioavailability of both atrazine and molinate to C. tepperi.  相似文献   

7.
The concentration of nine metals was measured in liver, kidney, heart, muscle, plastron, and carapace of Aspideretes gangeticus from Rasul and Baloki barrages, Pakistan. The results indicated that metal concentration were significant different among tissues of Ganges soft-shell turtles. However, higher concentrations of Co (5.12 μg/g) and Ni (1.67 μg/g) in liver, Cd (0.41 μg/g) in heart, Fe (267.45 μg/g), Cd (2.12 μg/g) and Mn (2.47 μg/g) in kidney, Cd (0.23 μg/g), Cu (2.57 μg/g), Fe (370.25 μg/g), Mn (5.56 μg/g), and Pb (8.23 μg/g) in muscle of A. gangeticus were recorded at Baloki barrage than Rasul barrage. Whereas mean concentrations of Pb (3.33 μg/g) in liver, Co (1.63 μg/g), Cu (11.32 μg/g), Pb (4.8 μg/g) and Zn (144.69 μg/g) in heart, Co (4.12 μg/g) in muscle, Ni (1.31 μg/g), Pb (2.18 μg/g), and Zn (9.78 μg/g) in carapace were recorded higher at Rasul barrage than Baloki barrage. The metals followed the trend Fe > Zn > Ni > Cu > Mn > Pb > Cr > Co > Cd. Metals of toxicological concern such as Cr, Pb, and Cd were at that level which can cause harmful effects to turtles. The results provide baseline data of heavy metals on freshwater turtle species of Pakistan.  相似文献   

8.
Triclosan is a common antimicrobial agent that is found in significant levels in the aquatic environment and may elicit effects on aquatic organisms through unexpected modes of action. In this study, triclosan was quantified in fish from the Kaveri River, India, by using the gas chromatography and mass spectrometry technique and it was found in the range of 0.73–50 ng/g wet weight (ww). The mean bioaccumulation factor based on water (BAFw 820) and sediment (BAFs 2.12) in the Kaveri River showed that triclosan is accumulative in fish, and reflects its feeding behavior. The bioaccumulation indicates triclosan's persistence or prevalence throughout the river stretch. Human risk assessment through dietary intake demonstrated that the triclosan exposure is five orders of magnitude lower than the acceptable daily intake (50 μg/kg bw) and US EPA reference dose (300 μg/kg bw/day). This investigation is the first to report the bioaccumulation of triclosan in freshwater fish from India. Further, the results indicate that this fish acts as a biomarker of exposure for triclosan and thus shall be used to report triclosan pollution in the future.  相似文献   

9.
Nutrient enrichment from nonpoint source pollution is one of the main causes of poor water quality and biotic impairment in many streams and rivers worldwide. The establishment of reference nutrient conditions in a river system is an essential but difficult task for water quality control. In the present study, the reference concentrations of total nitrogen (TN) and total phosphorus (TP) were estimated in an intensive agricultural watershed, the Cao-E River system of Eastern China. Based on a 3-year water quality monitoring data in the river system, three approaches were adopted to establish the reference concentrations of TN and TP, those are the 75th percentile of frequency distribution of nutrient concentrations in reference streams, the 25th percentile of frequency distribution of nutrient concentration in general streams (including reference and non-reference streams) and regression modeling. Results showed that the nutrient reference concentrations were slightly different from different approaches. By the three approaches, the average reference concentrations for TN and TP in the study system were 1.73?±?0.13 mg l?1 and 55.23?±?4.77 μg l?1 with CV of 7.39 % and 8.63 %, respectively. Accordingly, the reference concentrations for TN and TP were recommended to be 1.70 mg l?1 and 55 μg l?1, respectively. In the mountainous and intensive agricultural watershed, the major anthropogenic impacts to river water quality were the urban area percentage cover, cropland area with slopes 0–8°, and livestock and poultry waste loads density. These variables could account for 89.7 % and 80.3 % of the total variations for TN and TP concentration, respectively.  相似文献   

10.
Perchlorate concentrations in rice samples from many different provinces, and correlation with surface water contamination, were investigated in the Republic of Korea. Perchlorate levels in the 51 rice samples purchased from local markets ranged from below the detection limit to 1.79?±?0.39 μg/kg with a mean level of 0.21 μg/kg and 7 samples collected from the Nakdong River watershed ranged from 0.38?±?0.1 to 3.23?±?0.47 μg/kg with a mean level of 0.9 μg/kg. The correlation coefficient between perchlorate levels in rice samples from the Nakdong river watershed and the levels in surface water was estimated to be approximately 0.904 in the 95 % confidence interval. These results show that surface water contamination was highly related to the perchlorate pollution of rice in the Republic of Korea.  相似文献   

11.
River Swarna, a small tropical river originating in Western Ghats (at an altitude of 1,160 m above mean sea level) and flowing in the southwest coast of India discharges an average of 54 m3s?1 of water into the Arabian Sea, of which significant part is being discharged during the monsoon. No studies have been made yet on the water chemistry of the Swarna River basin, even as half a million people of Udupi district use it for domestic and irrigational purposes. As large community in this region depends on the freshwater of Swarna River, there is an urgent need to study the trace element geochemistry of this west flowing river for better water management and sustainable development. The paper presents the results on the biogeochemistry of dissolved trace elements in the Swarna River for a period of 1 year. The results obtained on the trace elements show seasonal effect on the concentrations as well as behavior and thus forming two groups, discharge driven (Li, Be, Al, V, Cr, Ni, Zr, In, Pb, Bi and U) and base flow driven (groundwater input; Mn, Fe, Co, Cu, Ga, Zn, As, Se, Rb, Sr, Ag, Cd, Cs, Ba and Tl) trace elements in Swarna River. The biogeochemical processes explained through Hierarchical Cluster Analysis show complexation of Fe, Ga and Ba with dissolved organic carbon, redox control over Mn and Tl and biological control over V and Ni. Also, the water quality of Swarna River remains within the permissible limits of drinking water standards.  相似文献   

12.
Invertebrate communities in polluted rivers are often exposed to a wide variety of compounds. Due to complex interactions, 'pollution tolerant' species are not necessarily the most tolerant species to toxicants tested under standard laboratory conditions. It was hypothesized that the distribution of species in polluted rivers is not only dependent on the tolerance of species to toxicants, but also on species-specific capacities to modify or compensate for negative effects of toxicants. To test this hypothesis, species-specific responses to metals in organically enriched river water were studied under controlled conditions. The zebra mussel Dreissena polymorpha and the midge Chironomus riparius were exposed to metal-polluted water from the River Dommel. Additionally, the (interactive) effects of metals and humic acids (HA) on both species were evaluated. In spite of a lower tolerance of Chironomus riparius to metals in laboratory studies, the midge was the most tolerant of the two test species to metal-polluted site water. The results indicated that the sensitivities of the two test species determined in laboratory tests were inversely related to their sensitivities to polluted river water. In accordance with these results, midge larvae were protected from copper (Cu) toxicity by HA, while metal toxicity was not reduced (Cu) or even amplified (cadmium) by HA for the zebra mussel. Thus, the presence of (naturally occurring) HA in site water may partly account for discrepancies between responses of species to bioassays and toxicity tests. It is suggested that these differences in responses to metals in site water are strongly influenced by species-specific preferences for organic compounds (like HA). It is concluded that the response to organic compounds present in site water largely determines whether a species is classified as 'pollution tolerant' or 'pollution sensitive'.  相似文献   

13.
Heavy metal concentrations (Pb, Cd, and Cu) in classroom indoor dust were measured. The health risk (non-carcinogenic) of these heavy metals in classroom indoor dust to children was assessed based on United States Environmental Protection Agency health risk model. Indoor classroom dust samples were collected from 21 locations including windows, fans, and floors at a primary school in Sri Serdang, Malaysia. Classroom dust samples were processed using aqua regia method and analyzed for Pb, Cd, and Cu concentrations. The highest average heavy metal concentrations were found in windows, followed by floor and fan. Pb concentrations ranged from 34.17 μg/g to 101.87 μg/g, Cd concentrations ranged from 1.73 μg/g to 7.5 μg/g, and Cu concentrations ranged from 20.27 μg/g to 82.13 μg/g. Ventilation and cleaning process were found as the possible factors that contributed to heavy metal concentration in window, floor, and fan. Moreover, the hazard index (HI) and hazard quotient (HQ) values for heavy metals Cd and Cu were less than one. By contrast, the HI and HQ values for Pb (maximum values) were more than one, indicating potential non-carcinogenic risk to children. Long-term persistence of leaded petrol, building materials, interior paint, school located near industrial areas and major roads, as well as vehicle emission are the factors attributed to the presence of heavy metals in classroom dust. Further research under a long-term monitoring plan and actual values in a health risk model is crucial before a final decision on heavy metal exposure and its relationship to young children health risks can be made. Nevertheless, the findings of this study provide crucial evidence to include indoor dust quality in school assessment because the environmental processes and impacts of surrounding school area have health risk implications on young children.  相似文献   

14.
This study assessed the in vitro and in vivo effects of an acetylcholinesterase enzyme inhibitor (chlorpyrifos) in two estuarine crustaceans: grass shrimp (Palaemonetes pugio) and mysid (Americamysis bahia). The differences in response were quantified after lethal and sublethal exposures to chlorpyrifos and in vitro assays with chlorpyrifos-oxon. Results from the in vitro experiments indicated that the target enzyme, acetylcholinesterase (AChE), in the two species was similar in sensitivity to chlorpyrifos inhibition with IC50s of 0.98 nM and 0.89 nM for grass shrimp and mysids, respectively. In vivo experiments showed that mysids were significantly more sensitive to chlorpyrifos-induced AChE inhibition after 24 h of exposure. The in vivo EC50s for AChE inhibition were 1.23 μg L?1 for grass shrimp and 0.027 μg L?1 for mysids.

Median lethal concentrations (24h LC50 values) were 1.06 μg L?1 for grass shrimp and 0.068 μg L?1 for mysids. The results suggest that differences in the response of these two crustaceans are likely related to differences in uptake and metabolism rather than target site sensitivity.  相似文献   

15.
Multivariate statistical techniques, such as analysis of variance, cluster analysis (CA), correlation analysis, principal component analysis (PCA), and factor analysis (FA), were applied to determine the spatial and temporal variations of dissolved heavy metals in the Tigris River at 7 different sites spread over the river stretch of about 500 km during the period of February 2008 to January 2009. The results indicated that Fe, Cr, and Ni were the most abundant elements in the river water, whereas Cd and As were the less abundant. Cu, Fe, Ni, and Zn showed significant spatial variations, reflecting the influence of anthropogenic activities. The lowest total concentration of heavy metals was found at site 2 downstream of the Dicle Dam due to clean water from the dam. The concentrations of most metals were found lower when compared with results of previous studies due to reduction of the activity of the copper mine plant and the construction of two dams on the river. The lowest total concentrations were determined in February due to high precipitation and snow melts. Hierarchical agglomerative CA classified all the sampling sites into three main groups of spatial similarities. Clusters 1 (Maden and Bismil), 2 (Cizre), and 3 (E?il, Diyarbak?r, Batman, and Hasankeyf) corresponded to moderate polluted and relatively low polluted regions, respectively. PCA/FA, CA, and correlation analysis suggest that Cu, Ni, and Zn are controlled by anthropogenic sources.  相似文献   

16.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

17.
To document the toxicity of copper and nickel in binary mixtures, freshwater amphipods Gammarus pulex were exposed to the metals given independently or as mixtures. Toxicity to Cu alone was relatively high: 96-h LC10 and LC50 were found at 91 and 196 μg L?1, respectively. Toxicity to Ni alone was very low, with 96-h LC10 and LC50 of 44,900 and 79,200 μg L?1, respectively. Mixture toxicities were calculated from single toxicity data using conventional models. Modeled toxicity was then compared with the measured toxicity of the binary mixture. Two kinds of mixtures were tested. Type I mixtures were designed as combinations of Cu and Ni given at the same effect concentrations, when taken independently, to identify possible interactions between copper and nickel. In type II mixtures, Cu concentrations varied from 0 to 600 μg L?1 while the nickel concentration was kept constant at 500 μg L?1 to mimic conditions of industrial wastewater discharges. Ni and Cu showed synergic effects in type I mixtures while type II mixtures revealed antagonistic effects. Low doses of Ni reduced Cu toxicity towards G. pulex. These results show that even for simple binary mixtures of contaminants with known chemistry and toxicity, unexpected interactions between the contaminants may occur. This reduces the reliability of conventional additivity models.  相似文献   

18.
深圳市河流沉积物重金属污染特征及评价   总被引:16,自引:0,他引:16  
分析了深圳市的深圳河、布吉河、龙岗河和茅洲河等4条河流沉积物中重金属的含量和富集状况,并对重金属污染的潜在生态危害进行了评价。结果表明:(1)1996-2003年,深圳河、布吉河、龙岗河和茅洲河沉积物中重金属的含量都有上升的趋势;布吉河和龙岗河沉积物中的重金属含量较高,特别是Cu、Zn和Cr的含量比其他两条河流高出较多,深圳河居中,茅洲河较小;这4条河流都以Cd、Cu、Cr和Zn的富集为主。(2)在研究时段内,这4条河流沉积物重金属污染的潜在生态危害指数(RI)都有上升的趋势;其中深圳河,布吉河和龙岗河的RI在多数年份都达到强或很强的程度,Cd、Hg、Cu为主要贡献元素;4条河流中,茅洲河受重金属污染最小,其RI为轻微或中等,只有Cd和Hg的生态危害系数为中等或强。针对深圳市河流沉积物中重金属的累积机理,建议通过改善区域水文条件、控制污染物的排放等措施加以控制和治理。  相似文献   

19.
Anthropogenic activities could result in increasing concentrations of heavy metals in soil and deteriorating in soil environmental quality. Topsoil samples from a typical industrial area, Shiting River Valley, Sichuan, Southwest China, were collected and determined for the concentrations of Cu, Zn, Cr, Cd, As, and Hg. The mean concentrations of these metals were lower than the national threshold values, but were slightly higher than their corresponding background values, indicating enrichment of these metals in soils in the valley, especially for Cu, Zn, and Hg. The topsoils in this area demonstrated moderate pollution and low potential ecological risk. Principal component analysis coupled with cluster analysis was applied to analyze the data and identified possible sources of these heavy metals; the results showed that soil Cd, Hg, As, Cu, and Zn were predominantly controlled by human activities, whereas Cr was mainly from the parent material. The spatial distribution of the heavy metals varied distinctly and was closely correlated to local anthropogenic activities. Furthermore, the concentrations of heavy metals in the industrial land demonstrated relatively higher levels than those of other land use patterns. Soil metal concentrations decreased with the distance increase from the traffic highway (0–1.0 km) and water system (0–2.0 km). Additionally, soil properties, especially pH and soil organic matter, were found to be important factors in the distribution and composition of metals.  相似文献   

20.
Prior to the application of biochar as an agricultural improver, attention should be paid to the potential introduction of toxicants and resulting unintended impacts on the environment. In the present study, the concentrations of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and mineral elements were determined in maize and sludge biochars produced at 100 °C increments between 200 and 700 °C. The concentration ranges of total PAHs were 358–5,136 μg kg?1 in maize biochars and 179–70,385 μg kg?1 in sludge biochars. The total heavy metals were detected at the following concentrations (mg kg?1): Cu, 20.4–56.7; Zn, 59.7–133; Pb, 1.44–3.50; Cd, <0.014; Cr, 8.08–21.4; Ni, 4.38–9.82 in maize biochars and Cu, 149–202; Zn, 735–986; Pb, 54.7–74.2; Cd, 1.06–1.38; Cr, 180–247; Ni, 41.1–56.1 in sludge biochars. The total concentrations of PAHs and heavy metals in all maize biochars and most sludge biochars were below the control standards of sludge for agricultural use in China, the USA, and Europe. The leachable Mn concentrations in sludge biochars produced at below 500 °C exceeded the groundwater or drinking water standards of these countries. Overall, all the maize biochars were acceptable for land application, but sludge biochars generated at temperatures between 200 and 500 °C were unsuitable for application as soil amendments due to their potential adverse effects on soil and groundwater quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号