首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the additive and interactive effects of simulated acid rain and elevated ozone on C and N contents, and the C:N ratio of one-year-old and current-year foliage of field-grown mature trees and their half-sib seedlings of a stress tolerant genotype of ponderosa pine. Acid rain levels (pH 5.1 and 3.0) were applied weekly to foliage only (no soil acidification or N addition), from January to April, 1992. Plants were exposed to two ozone levels (ambient and twice-ambient) during the day from September 1991 to November 1992. The sequential application of acid rain and elevated ozone mimicked the natural conditions. Twice-ambient ozone significantly decreased foliar N content (by 12-14%) and increased the C:N ratio of both one-year-old and current-year foliage of seedlings. Although similar ozone effects were also observed on one-year-old foliage of mature trees, the only statistically significant effect was an increased C:N ratio when twice-ambient ozone combined with pH 3.0 rain (acid rain by ozone interaction). Enhancing the effect of twice-ambient ozone in increasing the C:N ratio of one-year-old foliage of mature trees in June was the only significant effect of acid rain.  相似文献   

2.
Gas exchange and pigmentation responses of mature ponderosa pine (Pinus ponderosa Laws.) branches to ozone and acid rain exposure were investigated using three grafted clones growing in a managed seed orchard. Exposure of one-year-old foliage to twice ambient ozone (2 x AMB) resulted in significant decreases in net photosynthesis (Pn), stomatal conductance (gsw) and pigmentation relative to charcoal-filtered (CF) and ambient (AMB) ozone treatments. Ozone effects on gas exchange and pigmentation were most pronounced during late-season and differed significantly among clones. Environmental parameters (e.g. light, vapor pressure deficit, and temperature) accounted for more variation in Pn than did cumulative ozone exposure. Minimal differences in gsw and Pn among ozone treatments occurred during seasonal periods of high temperature and evaporative demand. Negative effects of 2 x AMB ozone on gsw and pigmentation were greatest for the clones having highest and lowest phenotypic vigor under ambient conditions; the clone of moderate phenotypic vigor under ambient conditions was least sensitive to ozone. Application of simulated acid rain of pH 3.0, pH 5.1 or no rain (NR) had little impact on gas exchange or pigmentation.  相似文献   

3.
Seedlings of Pinus ponderosa (ponderosa pine) and Abies concolor (white fir) were exposed to acidic fog (pH 2.0, 3.0 or 4.0) in open-field plots for six weeks. The two species exhibited dissimilar injury responses; neither current year nor previous year needles of ponderosa pine were injured by pH 2.0 fog, but current year needles exhibited higher membrane permeability responses (i.e. needle extract conductivity, K+ concentration). In comparison, both needle age classes in white fir were significantly injured by pH 2.0 fog, but no significant effects on membrane permeability were observed. For both species, whole-study average rates of net photosynthesis in previous year needles were lower in plants exposed to pH 2.0 fog than in plants treated with pH 4.0 fog. While decreased process rates coincided with leaf necrosis in white fir, stomatal closure appeared to be the mechanism of inhibition in ponderosa pine with pH 2.0 fog (i.e. no visible injury). The findings of the present study provide evidence that frequent applications of highly acidic fog (i.e. pH 2.0-3.0) can cause temporal alterations in membrane permeability and gas exchange rates in western conifer seedlings, in the presence or absence of visible injury. However, because incipient effects on other measures of foliage health were species-specific (i.e. concentrations of starch, photosynthetic pigments, inorganic nutrients), a general mechanism of phytotoxicity could not be identified.  相似文献   

4.
Plants of Bel-W3 and of seven commercial tobacco varieties (Nicotiana tabacum L.) were exposed to two relatively low ozone concentrations (90 or 135 ppb) for 20 consecutive days, for 8 h per day. Ozone caused necrotic and chlorotic spots, acceleration of leaf senescence, depression of photosynthetic mechanism, chlorophyll diminution and greater destruction of chl a than of chl b. The higher sensitivity of chl a was also confirmed by exposure of segments of leaves in test tubes to high ozone concentration (>1000 ppb) as well as by bubbling of ozone in extracts of chlorophyll in vitro. The quantum yield (QY) of photosynthesis was positively correlated with the chlorophyll content and negatively correlated with the visible injury and the chl b/a ratio.  相似文献   

5.
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.  相似文献   

6.
Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N′ phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in Fv/Fm ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant−1, leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.  相似文献   

7.
Fifteen or 18-month-old Aleppo pine seedlings were fumigated with different concentrations and doses of ozone over a period of 2-16 days in controlled-environmental growth chambers. The total fatty acid content and ultrastructure of the current year needles were subsequently analysed. In acute, high concentration exposures, significant reductions in the levels of linolenic acid were detected. Increases in myristic or palmitic acid were common in needles exposed to lower concentrations of ozone. Ultrastructural studies revealed reductions in chloroplast size and a darkening of stroma at low ozone exposures while at high concentrations disruption of the chloroplast membranes was also identified.  相似文献   

8.
Desert winter annual plants: Camissonia claviformis, C. hirtella, Caulanthus cooperi, Chaneactis carphoclinia, C. stevioides, Cryptantha angustifolia, C. pterocarya, Erodium cicutarium, Festuca octoflora, Lupinus concinnus, Oenothera californica, Plantago insularis, Platystemon californica, Salvia columbariae, Thelypodium lasiophyllum, and Thysanocarpus curvipes growing on irrigated and non-irrigated plots were exposed in situ to elevated levels of ozone dispensed from an open air exposure system. Plants were exposed intermittently to a gradient of ozone of concentrations ranging between 44 and 133 ppb (nL L?1) for 35 h over a total of 216 h. Only three species were injured by ozone at the highest ozone concentrations. Leaf injury to C. claviformis—2 percent total foliar injury (TFI), C. hirtella—1 percent TFI, and Erodium cicutarium—2 percent TFI, developed at the highest ozone concentrations. Leaf injury to these species was similar on the irrigated and nonirrigated plots. Leaf water potential and stomatal conductance significantly decreased in C. claviformis, and C. hirtella due to water stress but not ozone. Similar trend for net photosynthesis was also determined. The highest water potential and stomatal conductance values as well as the largest differences in water potential between irrigated and non-irrigated plants were found in the morning.  相似文献   

9.
The objective of this study was to determine if the incidence or severity of foliar injury induced by regional, ambient ozone was influenced by local emissions from a complex of coal-burning power plants in southwestern Pennsylvania. Plantings of an ozonesensitive hybrid poplar clone {Populus maximowizii x trichocarpa, clone NE 388) were established in 1972 at various distances and directions from the power plants. Foliar injury caused by ambient ozone was evaluated annually from 1973 to 1990 in early to mid- August. Data are presented for the 12-year period, 1979 to 1990 inclusive, for which the most complete data sets were available. Injury from ambient ozone varied spatially and temporally, but with little relationship to power plant location. There was an apparent negative relationship between emission trends and ozone-induced symptoms, but only for one power plant. The correlation between annual mean levels of ozone-induced stipple and frequency of days (per year) with a 1-hr ozone maximum exceeding 0.04 ppm was weak, but significant. Ozone-induced bifacial necrosis was not observed on the foliage of the hybrid poplar during the drought year of 1988 in spite of record high levels of ozone; however, ozoneinduced stipple was observed.  相似文献   

10.
Twenty-four experiments where EDU was used to protect plants from ozone (O3) in Italy are reviewed. Doses of 150 and 450 ppm EDU at 2-3 week intervals were successfully applied to alleviate O3-caused visible injury and growth reductions in crop and forest species respectively. EDU was mainly applied as soil drench to crops and by stem injection or infusion into trees. Visible injury was delayed and reduced but not completely. In investigations on mode of action, EDU was quickly (<2 h) uptaken and translocated to the leaf apoplast where it persisted long (>8 days), as it cannot move via phloem. EDU did not enter cells, suggesting it does not directly affect cell metabolism. EDU delayed senescence, did not affect photosynthesis and foliar nitrogen content, and stimulated antioxidant responses to O3 exposure. Preliminary results suggest developing an effective soil application method for forest trees is warranted.  相似文献   

11.
Two-year-old seedlings of ponderosa pine (Pinus ponderosa Dougl. ex Laws) were exposed to ambient concentrations of photochemical smog (AA) and clean air (CA) during a single field season at Tanbark Flat of the San Gabriel Mountains in the Los Angeles Basin. The seedlings were grown in a perlite-vermiculite medium with full supply of nutrients (based on modified Hoagland solution); reduced to 50% supply of N; reduced to 50% supply of Mg; and reduced to 50% supply of N+Mg. No significant effects of air pollution exposures on injury development, stem growth and concentrations of plant pigments were determined. The seedlings in the AA treatment had decreased N concentration in current year needles compared with CA seedlings; however, the needle concentrations of other elements did not change. Reduction of N supply in the growing medium caused decreased N, P, Ca, K and chlorophyll a concentrations in needles. Stem growth of the seedlings with reduced N supply was significantly decreased as well. No changes in stem growth or chemical composition of plants with reduced Mg supply were noted. Reduction of supply of nutrients did not change responses of trees to the air pollution exposures.  相似文献   

12.
Growth of ponderosa pines with visible symptoms of ozone injury was compared with that of asymptomatic trees in the southern Sierra Nevada, California. Time series analysis indicated that there was no significant reduction in annual radial increment of symptomatic trees during recent years compared to past growth and growth of asymptomatic trees. First order autocorrelation and climatic variables accounted for a large proportion of the variance in growth index, and winter precipitation was positively correlated with growth for all size and age classes. Although ozone concentrations are high enough to cause chlorosis and premature needle senescence in ponderosa pine, there has been no significant change in growth associated with ozone injury.  相似文献   

13.
CO(2) assimilation rate, stomatal conductance and chlorophyll content of current and previous years' needles of Norway spruce were measured in May 1988, 205 days after the cessation of ozone fumigation during the summer of 1987. Rates of assimilation were consistently higher for both needle year age classes for ozone fumigated trees in comparison to control trees, although only statistically significant for part of the day for current year's needles. A 26% and 48% stimulation, overall, in mean daily rates of assimilation for current and previous years' needles of ozone fumigated trees was observed. This was due to an enhanced apparent quantum yield and light saturated rate of assimilation of ozone fumigated trees. The temperature response regression of assimilation versus temperature was also greater, such that at any given temperature, assimilation was higher for ozone treated trees than control trees. Stomatal conductance was greater for ozone fumigated trees than the controls, but this was only marginally statistically significant. Moreover, there was a consistent increase in chlorophyll content in both year classes in ozone-treated trees. These results are discussed in relation to a possible long term effect of ozone fumigation upon the processes of conifer winter hardening and spring de-hardening.  相似文献   

14.
Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation.  相似文献   

15.
The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar?>>?Sufi?≥?Bijoy?≥?Shatabdi?>?Bari-26?≥?Gourab?>?Bari-25?≥?Prodip?≥?Sourav?>>?Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars’ PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.  相似文献   

16.
Abstract

Box-Jenkins univariate autoregressive integrated moving average (ARIMA) and regression with time-series error (RTSE) models were established to simulate historical peak daily 1-hr ozone concentrations at Ta-Liao, Taiwan, 1997– 2001. During 1995–2003, the 600 days of Pollution Standard Index (PSI) more than 100 (peak daily 1-hr ozone concentrations detected by greater than 120 ppm) at Tao-Liao showed the highest ozone exceedances among the six monitoring stations in Kaohsiung County. To improve the predictability of extremely high ozone, two different principal components, PC1 and PC(1 + 2), were introduced in the RTSE model. Four typical predictors (particular matter with an aerodynamic diameter less than or equal to 10 μm, temperature, wind speed, and wind direction) plus a PC trigger remained signi?cant in the RTSE model. The model performance statistics concluded that the RTSE model with PC1 was optimal, compared with the univariate ARIMA, the RTSE model without PC, and RTSE model with PC(1 + 2). The contingency table shows that the successful predictions of the univariate model were only 12.9% of that of the RTSE model with PC1. Also, the POD value was improved approximately 5-fold when the univariate model was replaced by the RTSE model, and almost 8-fold when it was replaced by the RTSE model with PC1. Moreover, introducing the PC trigger indeed enhanced the ozone predictability. After the PC trigger was introduced in the RTSE model, the POD was increased 69.9%, and the FAR was reduced 8.3%. The overall correlation between the observed and simulated ozone was improved 9.6%. Also, the ?rst principal component was more useful than the ?rst two components in playing the “trigger role, though it counted only for<br/>58.62% of the environmental variance during the high ozone days.  相似文献   

17.
Anthocyanins and tannins in ozone-fumigated guava trees   总被引:1,自引:0,他引:1  
Psidium guajava “Paluma”, a tropical tree species, is known to be an efficient ozone indicator in tropical countries. When exposed to ozone, this species displays a characteristic leaf injury identified by inter-veinal red stippling on adaxial leaf surfaces. Following 30 days of three ozone treatments consisting of carbon filtered air (CF – AOT40 = 17 ppb h), ambient non-filtered air (NF – AOT40 = 542 ppb h) and ambient non-filtered air + 40 ppb ozone (NF + O3 – AOT40 = 7802 ppb h), the amounts of residual anthocyanins and tannins present in 10 P. guajava (“Paluma”) saplings were quantified. Higher amounts of anthocyanins were found in the NF + O3 treatment (1.6%) when compared to the CF (0.97%) and NF (1.30%) (p < 0.05), and of total tannins in the NF + O3 treatment (0.16%) compared to the CF (0.14%). Condensed tannins showed the same tendency as enhanced amounts. Regression analyses using amounts of tannins and anthocyanins, AOT40 and the leaf injury index (LII), showed a correlation between the leaf injury index and quantities of anthocyanins and total tannins. These results are in accordance with the association between the incidence of red-stippled leaves and ozone polluted environments.  相似文献   

18.
The airway irritation of (+)-α-pinene, ozone, mixtures thereof, and formaldehyde was evaluated by a mouse bioassay, in which sensory irritation, bronchoconstriction, and pulmonary irritation were measured. The effects are distinguished by analysis of the respiratory parameters. Significant sensory irritation (assessed from reduction of mean respiratory rate) was observed by dynamic exposure of the mice, over a period of 30 min, to a ca. 22 s old reaction mixture of ozone and (+)-α-pinene from a Teflon flow tube. The starting concentrations were 6 ppm and 80 ppm, respectively, which were diluted and let into the exposure chamber. About 10% ozone remained unreacted (0.4 ppm), <0.2 ppm formaldehyde, <0.4 ppm pinonaldehyde, <2 ppm formic acid, and <1 ppm acetic acid were formed. These concentrations, as well as that of the unreacted (+)-α-pinene (51 ppm), were below established no effect levels. The mean reduction of the respiratory rate (30%) was significantly different (p≪0.001) from clean air, as well as from exposure of (+)-α-pinene, ozone, and formaldehyde themselves at the concentrations measured. Addition of the effects of the measured residual reactants and products cannot explain the observed sensory irritation effect. This suggests that one or more strong airway irritants have been formed. Therefore, oxidation reactions of common naturally occurring unsaturated compounds (e.g., terpenes) may be relevant for indoor air quality.  相似文献   

19.
Loblolly pine (Pinus taeda L.) seedlings were exposed to 0.120 micromol mol(-1) (ppm) ozone for 7 h per day, 5 days per week for 12 weeks. No visible damage resulted from this regime. A short-lived radioisotope of carbon ((11)C) was used to characterize changes in plant physiology caused by ozone, the first time this technique has been used for ozone exposure studies. In comparison to plants kept in charcoal-filtered air, pines exposed to ozone exhibited reductions in photosynthesis (16%), speed of phloem transport (11%), phloem photosynthate concentration (40%) and total carbon transport toward roots (45%). Photosynthate not transported to the roots appeared to accumulate in the stems. Primary branches of pines exposed to ozone were some 50-60% heavier than those of control pines. Ozone was thus shown to have a significant short-term impact on phloem transport processes that results in a shift in allocation of photosynthate favoring stems.  相似文献   

20.
For the first time we investigated the effect of solar irradiation upon the heterogeneous ozonation of adsorbed 3,4,5-trimethoxybenzaldehyde on solid surface. Light-induced heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde adsorbed on silica particles were performed and the consecutive reaction products were identified. At an ozone mixing ratio of 250 ppb, the loss of 3,4,5-trimethoxybenzaldehyde ranged from 1.0 · 10?6 s?1 in the dark to 2.9 · 10?5 s?1 under light irradiation. Such large enhancement of 29 times clearly shows the importance of light (λ > 300 nm) during the heterogeneous ozonolysis on organic coated particles.The reaction products identified in this study (3,4,5-trimethoxybenzoic acid, syringic acid, methyl 3,4,5-trimethoxybenzoate) absorb light in the spectral window (λ > 300 nm) which implies that light-induced heterogeneous ozone processing can have an influence on the aerosol surfaces by changing their physico-chemical properties.The main identified product of the heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde under dark conditions and in presence of light was 3,4,5-trimethoxybenzoic acid. For this reason we estimated the carbon yield of 3,4,5-trimethoxybenzoic acid. Carbon yields of 3,4,5-trimethoxybenzoic acid decreased with increasing ozone mixing ratio; from 40% at 250 ppb to 15% at ≥2.5 ppm under dark conditions. At ozone mixing ratio (250 ppb–1 ppm), carbon yields of 3,4,5-trimethoxybenzaldehyde are relatively higher in the experiment under dark condition than under simulated solar light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号