首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a method to forecast the exceedance probability of a fixed threshold for a certain air pollutant concentration. This general approach has been applied in the case of carbon monoxide on 35 traffic monitoring stations in the Lombardy Region. The implemented model has been called FOREPOLL (Forecast Pollution).The model structure, consisting in three basic modules (the deterministic, the stochastic and the Bayesian one), has been thought to be adjustable to different stations of an air quality network and to various pollutants. Forepoll uses the last biennium data set of the station in exam (pollutants and micrometeorological parameters) as a moving learning time and also needs the forecasted synoptic weather type. In the first module the daily maxima of the hourly measured pollutant concentrations are checked in order to eliminate some known physical dependencies, such as the temperature dependence of the emissions. Then the data are divided into subgroups depending on the weather type and in each group fitted by a different Weibull distribution. To provide a first a priori exceedance probability, this distribution is daily rebuilt by taking into account the forecasted parameters. In the last module this probability is enhanced or reduced using simple, experience based, bayesian rules providing the a posteriori exceedance probability.Model validation trials have been carried out on a year of CO forecasted concentrations in different air quality stations; the first results are quite good particularly for the metropolitan areas, because the model seems to work better in case of stronger and more diffuse pollution.  相似文献   

2.
This study explores the appropriateness of the locality of air monitoring stations which are meant to indicate air quality in the area. Daily variations in NO2 and PM10 concentrations at 14 monitoring stations in Hong Kong are examined. The daily variations in NO2 at a number of background monitoring stations exhibit patterns similar to variations in traffic volume while variations in PM10 concentration exhibit less discernible pattern. Principal component analysis (PCA) and cluster analysis (CA) are applied to analyse NO2 and PM10 measurements between January 2001 and December 2005. The results show that NO2 concentrations at background stations within the urban area are highly influenced by vehicle emissions. The effect vehicle emission has on NO2 at stations within new towns is smaller. CA results also show that variations in PM10 concentrations are distinguished by the area the station is located in. PCA results show that there are two principal components (PC's) associated with variations in roadside concentration of PM10. The strong influence of roadside emissions towards concentrations of NO2 and PM10 at a number of urban background stations may be due to their close proximity to busy roadways and the high density of surrounding tall buildings, which creates an enclosure that hinders dispersion of roadside emissions and results in air pollution behaviour that reflects variation in traffic.  相似文献   

3.
During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites (p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.  相似文献   

4.
The spatial variation of ground level ozone concentrations was investigated for areas of three different scales: (1) an air quality management district (a region about 100×70 km2) in northern Taiwan, (2) the neighborhood (about 2 km in radius) of an air quality monitoring station, and (3) an open field (about 400×600 m2) surrounded by 3- and 4-story buildings in an elementary school. Analysis of data on hourly ozone concentration, obtained at 13 m above the ground at 21 monitoring stations in the air quality management district, showed that the stations downwind of the urban center in the district had significantly higher ozone concentrations. Measurements for 8-h average ozone concentrations at 1.5 m above the ground by passive samplers showed that, in a flat area about 2 km in radius, the ratios of the ozone concentration at open areas to that at the monitoring station (0.86–0.93) were significantly higher than those obtained at areas with higher traffic flow and density of buildings (0.60–0.68). For the open field in an elementary school, the 8-h average ozone concentrations at 1.5 m above the ground at sites less than 10 m from the nearest building were considerably lower than those at sites farther away from buildings. The results indicated that, in areas of small scales, the spatial distributions of ozone concentration were highly non-uniform and there were appreciable day-to-day variability in spatial distribution. Such variability should be taken into account in determining the extent to which an individual is exposed to ozone.  相似文献   

5.
Abstract

Transit traffic through the Austrian Alps is of major concern in government policy. Pollutant burdens resulting from such traffic are discussed widely in Austrian politics and have already led to measures to restrict traffic on transit routes. In the course of an environmental assessment study, comprehensive measurements were performed. These included air quality observations using passive samplers, a differential optical absorption spectroscopy system, a mobile and a fixed air quality monitoring station, and meteorological observations. As was evident from several previous studies, dispersion modeling in such areas of complex terrain and, moreover, with frequent calm wind conditions, is difficult to handle. Further, in the case presented here, different pollutant sources had to be treated simultaneously (e.g., road networks, exhaust chimneys from road tunnels, and road tunnel portals). No appropriate system for modeling all these factors has so far appeared in the literature. A prognostic wind field model coupled with a Lagrangian dispersion model is thus presented here and is designed to treat all these factors. A comparison of the modeling system with results from passive samplers and from a fixed air quality monitoring station proved the ability of the model to provide reasonable figures for concentration distributions along the A10.  相似文献   

6.
Long-range transport of pollution outflow from Asian mainland has been noticed and expected to play a significant role in Pacific background. Since 1993 the Taiwanese Environmental Protection Administration (TEPA) is conducting ground-based observations of various particulate and gaseous pollutants at 74 monitoring stations in Taiwan. One of these stations, Heng-Chun at the south coast of Taiwan can be considered as a background station with only negligible amounts of local pollution, and another one, Wan-Li at the north coast, predominantly receives air that has not passed over Taiwan, so that background air can be analysed by means of sectorisation. In this work, the sectorised 13-year time series of measurements of CO, SO2, O3, NOx and PM10, from the Wan-Li station are presen and compared to data from the Heng-Chun station and another TEPA background station off the coast of mainland China, Ma-Zu. The CO and O3 measurements are also compared to data from the Yonaguni station, a Pacific island site, part of the Global Atmospheric Watch (GAW) network.The similarity of the sectorised data from the Wan-Li station with the data of the other station indicates that atmospheric measurements from the Wan-Li site can be used to make inferences about trends in western Pacific background air pollution and the effect of long-range transport of pollutants. The measurement time series from 1993 to 2006 do not indicate a significant trend in the monthly mean O3 concentrations in accordance with other research about ozone in tropical latitudes. An increasing trend in CO concentrations of 2.8% per annum is observed between 1999 and 2006 for long-range transport to northern Taiwan, and a doubling of the SO2 and NOx concentrations observed at the Wan-Li and Heng-Chun sites within the period 2001–2006. SO2 concentrations are found to quadruple at Ma-Zu within the same period. The data suggest that pollution from the Asian mainland enhances significantly the background air pollution over the Pacific.  相似文献   

7.
Abstract

This paper describes a statistic to quantify spatial representativeness for the air measurements of an urban fixed-site ambient air monitoring station. The application of such a statistic of representativeness has also been successfully demonstrated by two data sets collected at the Gu-Ting monitoring station in Taipei. By measuring NO2 at 22 sites simultaneously around the Gu-Ting station, the statistic has characterized different degrees of spatial representativeness for nitrogen dioxide (NO2) at various areas and microenvironments surrounding this fixed-site monitoring station. By measuring ambient air concentrations at six sites sequentially around the Gu-Ting station, the statistic has also characterized different degrees of representativeness for particulates less than 10 urn in size—(PM10), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), NO2, nitrogen oxides (NOX), nitrogen monoxide (NO), total hydrocarbons (THC), and nonmethane hydrocarbons (NMHQ—at an open area surrounding this fixed-site monitoring station. This statistical method identifies the Gu-Ting station is well representative of outdoor concentrations of all nine air pollutants for a period of three weeks at the areas within a 700 m radius around this station. The indoor NO2 concentrations, however, are not represented by the measurements at the fixed-site monitoring station.  相似文献   

8.
Data on dally maximum ozone concentrations measured at ambient air monitoring stations operated by state and local air pollution control agencies in the Eastern United States were analyzed using principal factor analysis. Four orthogonal factors representing O3 formation potentials were derived using the statistical package SPSS; these factors accounted for over two-thirds of the variations in 1978 summer O3 levels at 21 urban-oriented stations. The analysis confirmed that O3 variations are similar among stations within defined geographical areas; this confirmation supports the widely held theory that ambient O3 formations are reglonwlde. The analysis suggested that trends analysis for determining general progress in improving O3 air quality should be based on aggregate statistics from clusters of monitors rather than from a single monitoring station within areas associated with the derived factors.  相似文献   

9.
The Pennsylvania Air Pollution Commission has developed a regulatory program based upon the control of local air pollution problems and reduction of pollutant levels in air basins. The geographical boundaries of 10 air basins have been established. The Commission’s air basin regulations will provide for the reduction of over-all pollutant levels and for emergency procedures in the event of adverse meteorological conditions. The paper discusses the format and objectives of the program.

In order to effectively enforce the air basin regulations and maintain the necessary surveillance of the state’s air quality, a "computerized real time on-line integrated air monitoring-data handling system" has been designed. The system will incorporate a network to constantly monitor the air in each air basin.The primary objectives of the system are: 1. Constant surveillance of air pollution in the air basins.

2. Provide information on air pollution potential alerts.

3. Aid in further development of air quality criteria and regulations.

The air monitoring network is estimated to include approximately 25 remote stations. Each remote will contain air pollution and meteorological sampling equipment and hardware to telemeter to a central station. The data will be transmitted over leased telephone lines. The central station in Harrisburg will contain the necessary hardware to receive and process data, calculate and display results and permit supervisory control of the network. Output options will include immediate display of edited data, command and alarm information, and presentation of statistical results.

Although the air monitoring system is one of the principle ingredients of the program, the air basin concept encompasses other component systems designed to knit together the entire air pollution control program in Pennsylvania.  相似文献   

10.
Ravenna is one of the main Italian ports and has assumed a leadership position in Italy for some products and markets. The commercial harbour and the adjacent industrial area are very important for the economic system of Ravenna but, at the same time, they are highly critical areas.In particular, on average 8000 ships per year pass through the harbour of Ravenna, influencing air quality in harbour environment.The paper originates from a study about the contribution of different sources of air pollution in Ravenna and its aim is to evaluate the maritime traffic contribution to the air quality in the port area and to determine the suitability of an urban air quality model to support the air quality management in Ravenna. NOx and PM are selected as modelled pollutants.The study is made up of two parts. The first deals with the evaluation of annual emission of PM10 and NOx coming from ships through a standard European methodology while in the second we simulated the diffusion of these pollutants in the whole area. In order to evaluate the capability of the model to treat maritime traffic emissions, we compared hour-by-hour simulated concentrations with data collected by a fixed monitoring station located near the Candiano Canal.NOx concentrations obtained by short- and long-term simulations show a good match with the values measured by the fixed monitoring station, located in the centre of harbour area, and these results are also supported by FA2 performance index.Instead the omission of the secondary particulate and the contribution of other sources of particulate matter in the port area are probably the most important causes of the PM10 underestimation.The worse results obtained according to the performance indexes indicate the need to consider the formation and transport of secondary particulate matter in order to obtain more reliable predictions.  相似文献   

11.
An impact related daily air quality index (DAQx), calculated for 15 air quality monitoring stations (traffic, background, and industry) in Belgium, France, Germany and Luxembourg, was compared to mesoscale atmospheric patterns between 2001 and 2007. Meteorological conditions were described by the Hess and Brezowsky synoptic weather classification system and gridded data of the EU FP6 ENSEMBLES project of total precipitation and mean surface temperature. DAQx values indicate sufficient to poor air quality in the urban area of Brussels and at urban traffic stations, as well as satisfactory air quality at the background stations. The air quality index refers to more than 90% to the presence of high PM10, O3 and NO2 concentrations. SO2 and CO play only a minor role. The investigation of weather regimes indicates that zonal and mixed cyclonic circulation regimes are associated with better air quality than meridional and anticyclonic weather regimes. In general, weather regimes with high daily precipitation lead to better air quality than dryer air masses because of lower contribution of PM10 to the air quality index. A trend analysis of weather regimes from 1978 to 2007 shows significant (α = 0.05) positive trends for weather classes associated with lower PM10 concentrations. The results of a case study at a German station examining the relationship between PM10 concentrations and local meteorological quantities (wind speed and precipitation) confirm the results of the regional analysis.  相似文献   

12.
An air quality survey technique for measuring the horizontal spatial variation of carbon monoxide concentrations in urban areas is described; it was used to determine how representative an urban air monitoring station is of concentrations throughout the city.

The survey technique was applied in San Jose, Calif., where 1128 samples were collected over a six-month period and were compared with the values recorded simultaneously at the urban air monitoring station. All samples were collected at “breathing height” within a 13-square-mile grid which included the downtown area as well as surrounding residential and industrial locations. Three basic sampling strategies were employed to answer specific questions about the distribution of carbon monoxide concentration: (7) walking sampling, in which samples were obtained while walking along the sidewalks of congested downtown streets, (2) random spatial sampling, in which samples were collected at randomly selected points in the urban grid, and (3) specialized sampling in the immediate vicinity of the air monitoring station.

The results indicate that pedestrians on downtown streets in San Jose can be exposed to concentrations above the federal air quality standards without these values being observed at the air monitoring station. There also is evidence that, at any instant of time, similar values of carbon monoxide exist throughout this city (within a 13-square mile area), provided that measurements are not made in close proximity to streets. Furthermore, the higher concentrations observed in the immediate vicinity of streets decrease quite rapidly with increasing horizontal distance from these streets.

These findings, in the view of the authors, raise serious doubts as to whether it is possible to determine if air quality standards as currently defined are actually being met in urban areas using data from present-day air monitoring stations.  相似文献   

13.
We initiated the PETER (pedestrian environmental traffic pollutant exposure research) project to investigate pedestrians' exposure to traffic related atmospheric pollutants, based on data obtained with the collaboration of selected categories of pedestrian urban workers. We investigated relations between roadside personal exposure levels of volatile aromatic hydrocarbons (including benzene) and particulate matter <10 microm (PM10) among traffic police (n = 126) and parking wardens (n = 50) working in downtown Bologna, Italy. Data were collected from workshifts throughout four 1-week periods in different seasons of 2000-2001. For benzene and PM10, comparisons were made with measurements by fixed monitoring stations, and influence of localized traffic intensity and meteorological parameters was examined. Roadside personal exposure to benzene correlated more strongly with other volatile aromatic hydrocarbons (toluene, xylenes and ethylbenzene) than with PM10. Benzene and PM10 personal exposure levels were higher than fixed monitoring station values (both p<0.0001). At multivariate analysis, benzene and PM10 data from fixed monitoring stations both correlated with meteorological variables, and were also influenced by localized traffic intensity. Plausibly because of the downtown canyon-like streets, weather conditions (during a period of drought) only marginally affected benzene personal exposure, and moderately affected PM10 personal exposure. These findings reinforce the concept that urban atmospheric pollution data from fixed air monitoring stations cannot automatically be taken as indications of roadside exposures.  相似文献   

14.
Onofrio M  Spataro R  Botta S 《Chemosphere》2011,82(5):708-717
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are ubiquitous contaminants, mainly released into the environment during combustion processes (point sources), but also from other sources (traffic, uncontrolled combustion).This study aims at investigating the contribution of a steel plant in NW Italy (700 000 tons of steel year−1) to the air concentrations of PCDDs/PCDFs at local level, through the analysis of measured, modelled and literature data. The study was carried out in an area of 600 km2, using air quality data measured by the institutional monitoring network, data obtained from AERMOD simulations and literature data.The measured air concentrations were consistent with literature values for similar areas, and both the homologue profiles and PCA analyses showed a clear distinction between the monitoring stations and the source profiles.All the previous results were confirmed by the air dispersion model (AERMOD), that predicted PCDD/F air concentrations due to the steel plant from four to two orders of magnitude lower than those measured in the monitoring stations, highlighting the presence of other sources.This study outlines the limited influence of the source in the local PCDD/F air concentrations and at the same time the usefulness of a joint analysis of measured, literature and calculated data to correctly evaluate the role of a source to the local pollution. The study also highlights the usefulness of AERMOD as a complementary tool to define the correct placement of monitoring stations and to locate those areas expected to have the highest air concentrations deriving from a source.  相似文献   

15.
Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO2 and 8-hr O3 within a zone that meets the compliance requirements of each method. The first method, the “3 Strike” method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity of the statistical tests, causing the null hypothesis to fail. Local air quality managers can use either methodology to classify the compliance of an air zone, but must accept that the 99% Rule method may cause exposures that are statistically more significant than the 3 Strike method.

Implications: A novel method using the Central Limit Theorem and Monte Carlo analysis is used to directly compare different air standard compliance classification methods by estimating the chronic daily intake of pollutants. This method allows air quality managers to rapidly see how individual classification methods may impact individual population groups, as well as to evaluate different pollutants based on dosage and exposure when complete health impacts are not known.  相似文献   


16.
Some preliminary analyses of data selected from three years of smoke shade and sulfur dioxide measurements from the forty air monitoring stations in New York City are presented. The purpose of these analyses is to investigate the spatial-temporal variation in concentration of these pollutants throughout the five boroughs of the city. Air pollution health effects studies in New York City have often used city-wide daily morbidity or mortality statistics and related them to air pollution levels obtained from a single monitoring station. The question of whether readings at one station in New York City can adequately represent the air pollution exposure for the population in the five boroughs is examined in this paper. Some samples of correlation matrices of daily pollution averages obtained from the forty air monitoring stations are presented to illustrate the day-to-day variation in pollution in various sections of New York City. It was found that interstation correlations are not high enough to justify the use of one central pollution measuring station as representative of a large metropolitan area. Sulfur dioxide correlates better between stations than smoke shade; this may reflect the different nature and spatial distribution of sources of the two pollutants. Close proximity of stations, or the fact that they were at similar heights above street or sea level did not necessarily lead to higher correlation coefficients.  相似文献   

17.
The objectives of this study were to describe trends in ambient air quality in Tehran between 1988 and 1993, to determine if these levels exceeded the World Health Organization (WHO) guidelines, and to discuss possible health effects related to exposure for these particular pollutants. Data were acquired from Iran's Environmental Protection Agency (IEPA) and the Ministry of Health (MH). These agencies operate five automated ambient air monitoring stations located in areas with heavy traffic. Daily samples of SO2, NO2, CO, total suspended particulate matter (TSM), and hydrocarbons (HC) were collected to provide 24 hour averages for each pollutant. Every three months, mean concentrations were reported to IEPA. Composite samples from all five stations were stored in a databank operated by IEPA. The ambient air quality guidelines were obtained from WHO reports. Statistical analysis was carried out using a regression model, which was designed to fit the air pollution data and take into account missing data. The results showed that there was a statistically significant upward trend in air pollution levels for all of the measured pollutants, except NO2, during the years 1988 to 1993. WHO guidelines were routinely and substantially exceeded by all pollutants except TSM. These findings suggest that as the population continues to grow, and increasing numbers of motor vehicles are driven in Tehran, there is concern for the health effects that may result from exposure to these pollutants.  相似文献   

18.
A new method was developed for determining the contribution of one pollutant source to the air quality in an industrialized region. Although the method is general, it is presented in reference to a 130,000 bbl/day petroleum refinery and its effect on ambient SO2 concentrations in Sarnia, Ontario. The plumes from SO2 emitters located upwind of the refinery were represented by a single hypothetical plume which influences monitoring stations located upwind as well as downwind from the refinery. However, the refinery emissions affect only the downwind stations. A simple equation was derived by means of which the concentration at the downwind station could be calculated from the concentration at the upwind station and the refinery emission. This equation contains two coefficients A and B which were evaluated such that the difference between the cumulative frequency distributions of the measured and calculated SO2 concentrations at the downwind station was minimized. For the meteorological conditions and monitoring stations considered, it was found that the refinery contributed less than 4.5 pphm to ambient SO2 concentrations over 1 hr periods. This result and the validity of the method are discussed.  相似文献   

19.
Abstract

Airborne fine particles of PM2.5-10 and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 μg/m3. The low-polluted (L) area showed low PM10 (34–74 μg/m3 in the daytime and 54–89 μg/m3 at night). PM2.5 in the H area varied between 82 and 143 μg/m3 in the daytime and between 45 and 146 μg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 μg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 μg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 ± 0.08 and L = 0.65 ± 0.04).

Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10.

Bangkok air quality data for 1997–2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 μg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 μg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

20.
The Alpine stations Zugspitze, Hohenpeissenberg, Sonnblick, Jungfraujoch and Mt. Krvavec contribute to the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organization (WMO). The aim of GAW is the surveillance of the large-scale chemical composition of the atmosphere. Thus, the detection of air pollutant transport from regional sources is of particular interest. In this paper, the origin of NOx (measured with a photo-converter), CO and O3 at the four Alpine GAW stations is studied by trajectory residence time statistics. Although these methods originated during the early 1980s, no comprehensive study of different atmospheric trace gases measured simultaneously at several background observatories in the Alps was conducted up to present.The main NOx source regions detected by the trajectory statistics are the northwest of Europe and the region covering East Germany, Czech Republic and southeast Poland, whereas the main CO source areas are the central, north eastern and eastern parts of Europe with some gradient from low to high latitudes. Subsiding air masses from west and southwest are relatively poor in NOx and CO.The statistics for ozone show strong seasonal effects. Near ground air masses are poor in ozone in winter but rich in ozone in summer. The main source for high ozone concentration in winter is air masses that subside from higher elevations, often enhanced by foehn effects at Hohenpeissenberg. During summer, the Mediterranean constitutes an important additional source for high ozone concentrations.Especially during winter, large differences between Hohenpeissenberg and the higher elevated stations are found. Hohenpeissenberg is frequently within the inversion, whereas the higher elevated stations are above the inversion.Jungfraujoch is the only station where the statistics detect an influence of air rich in CO and NOx from the Po Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号