首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This is the fifth in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper describes research to improve reverse-gas cleaning technology, and to characterize reverse-gas sonic assisted and shake/deflate cleaning.  相似文献   

2.
This is the sixth and last part in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper discusses research, development and demonstration activities now underway or planned to further understand baghouse technology to ensure efficient, economic and reliable service in utility applications. In addition, it summarizes the major findings reported in Parts I through V.  相似文献   

3.
Electric utilities have made significant progress in recent years in designing and operating baghouses for collection of coal fly ash. As a result, early concerns with high operating and maintenance requirements and short bag lives are no longer an issue. With increasingly stringent air emissions regulations and imminent revision of the Clean Air Act, baghouses have become an attractive particulate collection option for utilities.

In order to keep its member utilities apprised of the latest design and operation and maintenance experience with baghouses, the Electric Power Research Institute has been conducting surveys of utility baghouse user experience. This paper presents results from the latest survey, conducted in 1989. A previous survey was conducted in 1985. The 1989 survey was conducted using questionnaires mailed to the utilities, telephone inquiries, and plant visits. This paper discusses the general trends observed in baghouse design, performance, operation and maintenance.  相似文献   

4.
This report summarizes information and results presented at the 2nd Conference on Fabric Filter Technology for Coal-Fired Power Plants. Sponsored by the Air Quality Control Program, Coal Combustion Systems Division, of the Electric Power Research Institute, in cooperation with the Public Service Company of Colorado, the conference focused on recent technological developments in the design and operation of fabric filters (baghouses) in utility settings. The information presented was designed to assist utilities currently operating baghouses, preparing engineering specifications for new units, or contemplating installation of baghouses for the first time.  相似文献   

5.
Abstract

The cumulative years of service of baghouses in the electric utility industry have doubled since the last industrywide review of their operating performance. We have gathered information from all 102 operating baghouses to develop an updated record of how this technology continues to serve the electric utility industry. In general, baghouse performance has met or exceeded the expectations for controlling emissions. There are, however, wide ranges of pressure drop and bag life performance. Most operators report a long-term trend of increasing pressure drop. The life expectancy of filter bags averages 7.5 years, with more than 20% of the population achieving more than 10 years of bag life. Factors such as coal and ash properties certainly affect baghouse operation, but another reason for variations in bag life is the lack of an optimized protocol for controlling the long-term buildup of residual dustcake. We conclude that many baghouses could operate with lower pressure drop and longer bag life by optimizing the cleaning system. Dustcake weight or drag are better indicators of performance than pressure drop and should be used to develop an optimum baghouse operating protocol.  相似文献   

6.
This paper summarizes information and results presented at the Third Conference on Fabric Filter Technology for Coal-Fired Power Plants held November 19-21, 1985 in Scottsdale, Arizona. Sponsored by the Electric Power Research Institute (EPRI), in cooperation with the Arizona Public Service Co. and Salt River Project, the conference focused on recent technological developments in the design and operation of fabric filters (baghouses) in electric utility settings. Papers were presented by individuals representing utilities, fabric filter manufacturers, research and development organizations, and regulatory agencies. Approximately 200 individuals attended the sessions. Summaries of the first two conferences and results of other fabric Biter research sponsored bv EPRI have been published previously in JAPCA.1–9  相似文献   

7.
In advanced electrostatic stimulation of fabric filtration (AESFF), a high voltage electrode is placed coaxially inside a filter bag to establish an electric field between the electrode and the bag surface. The electric field alters the dust deposition pattern within the bag, yielding a much lower pressure drop than that found in a conventional bag. Pilot plant results show that AESFF bags can operate with a rate of pressure loss that is 70 percent below that for conventional bags. The presence of the electric field also affects the aging characteristics of the AESFF bags. On the average, the AESFF bags had residual drags that were 10 percent below those of conventional bags. The results show that AESFF baghouses can yield the same pressure drop performance as conventional baghouses while operating at much higher air-to-cloth ratios. An economic analysis evaluated the capital, operating, and maintenance costs for electric utility plants ranging from 200 to 1,000 MW. For AESFF baghouses the capital cost was found to be 25 to 48 percent below that of a conventional baghouse. A lifetime cost analysis predicts a net present value for an AESFF baghouse that is 10 to 30 percent below that of a conventional baghouse.  相似文献   

8.
Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial boiler applications and in utility and industrial boilers abroad. Their small size and reduced cost relative to more conventional reverse-gas baghouses makes the use of PJFFs appear to be an attractive particulate control option for utility boilers. This paper (Part 2 of a three-part series) summarizes the results of pilot PJFF studies sponsored by the Electric Power Research Institute at different utility sites in the United States. The purpose of these tests is to evaluate PJFF performance for U.S. fossil-fuel-fired applications. These data are also used to corroborate the results of a recent worldwide survey of PJFF user experience, as described in Part 1 of this series. Part 3 will provide a cost comparison of PJFFs to other particulate control options such as electrostatic precipitators and reverse-gas baghouses.  相似文献   

9.
Pulse-jet fabric filters (PJFFs) are widely used in U.S. industrial applications, and in both utility and industrial boilers abroad. Their smaller size and reduced cost relative to more conventional baghouses make PJFFs an attractive particulate control option for utility boilers. This article which is the third in a three-part series, compares the cost of PJFFs with electrostatic precipitators (ESPs) and reverse-gas baghouses (RGBs).

This article presents the capital, operating and maintenance (O&M), and level-ized costs for ESPs, RGBs and PJFFs. The particulate control equipment design and pricing are supplied by manufacturers of the control equipment. A comparison of costs for a base case 250-MW boiler indicates that the PJFF capital cost is 22 percent lower than the cost of an ESP with 400 SCA and 12-inch plate spacing; in addition the PJFF is 35 percent lower than the cost of an RGB. The levelized cost for a PJFF is about equal to the cost of the ESP but 14 percent lower than the cost of the RGB. Overall, the attractiveness of a PJFF versus an ESP depends on the coal type and the outlet emissions limit required. PJFF is favored when low-sulfur coal is fired due to the high-resistivity fly ash. Also, PJFF is favored as more stringent outlet emission rates are required.  相似文献   

10.
Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental properties of dustcake ash that influence baghouse performance. A database was assembled including measured characteristics of dustcake ash and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Semi-empirical models were developed that describe the effects of particle morphology, particle size, ash cohesivity and ash chemistry on filtering pressure drop and particulate emissions. Cohesivity was identified as the primary ash characteristic affecting baghouse performance. Predictions of performance can be based on physical or chemical characterizations of the ash to be filtered. Part II of this article will discuss the effects of ash and coal chemistry, and baghouse design and operation on performance.  相似文献   

11.
This paper documents operation of reverse air fabric filters on Baltimore Gas and Electric’s C. P. Crane Units 1 and 2 cyclone boilers. Beginning immediately after startup, tubesheet pressure drop increased to high levels. Following stabilization with sonic horns and spare reverse air fans, an investigation was mounted. Diagnostic tools included both laboratory and slipstream pilot baghouses to determine cause and evaluate candidate methods of reducing pressure drop. Fundamental ash properties determined through laboratory pilot testing were in conformance with predictions. Alternate fabrics and coatings did not eliminate the problem. The root cause of the problem was that the amount of variable cake, i.e. that ash removed during cleaning, plays an important role in the dynamics of bag cleaning. These dynamics were absent in the C. P. Crane filters. Confirmation was obtained in the full scale baghouse through modification of the variable cake weight using ash reinfection. Finally, offsetting pressure drop and power consumption reductions have been obtained to achieve satisfactory operation of the baghouses.  相似文献   

12.
In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

13.
The principle of fabric filtration has only recently been accepted for fossil fuel fired boiler particulate emissions control. Information on design criteria is, therefore, limited. The paper provides data on the few installations where baghouses have been installed and successfully operated. The general conclusion is that a strong relationship exists between air to cloth ratio and bag life.  相似文献   

14.
15.
This document has been prepared to assist a prospective purchaser in the specification, purchase, and performance evaluation of all designs of Industrial baghouses (fabric filter-type dust collectors). A secondary, but essential, goal is to insure that the prospective purchaser and equipment manufacturer have a commonly understood vocabulary to prevent misunderstandings.  相似文献   

16.
The pace and direction of electrostatic precipitator (ESP) technology evolution in the United States will be governed by two key forces. The first is new clean air legislation passed by the U.S. Congress and signed by President Bush on November 15,1990. This law requires electric utilities to further reduce SO2 and NOx emissions, which may impact particulate controls. In addition, very fine (< 10 micron) participates and potentially toxic trace emissions from utility power plants may be regulated. The second major factor is the expected upsurge in new plant construction beginning in the late 1990s. Together, these forces should define the performance requirements and market for new ESPs.

This paper identifies and briefly describes technologies that the Electric Power Research Institute (EPRI) is developing to help U.S. utilities meet these challenges cost-effectively. Among the technologies addressed are: advanced digital voltage controls, flue gas conditioning, intermittent energization, temperature-controlledprecharging (i.e., two-stage ESP), wide plate spacing, positive energization of corona electrodes for hot-side ESPs, and integration of conventional ESPs with pulse-jet baghouses.  相似文献   

17.
At the Monticello station, operated by the Texas Utilities Generating Company, lignite coal obtained locally in Titus and Hopkins Counties fuels each of the three units. Units 1 and 2 are identical 575-MW Combustion Engineering (CE) boilers, each of which discharges its effluent to a 36- compartment shake/deflate cleaned baghouse paralleled with four electrostatic precipitators (ESP). Unit 3 is a larger boiler and is followed by an ESP and a scrubber. The Unit 1 and 2 baghouses were designed to clean 80 percent of the flue gas. Since startup, these baghouses have regularly experienced flange-to-flange pressure drops in excess of 10 in. H2O, with large opacity spikes caused by ash bleeding through the bags after compartment cleanings. Because of higher-than-expected pressure drop, the baghouses receive only about 45-50 percent of the flue gas. Analysis has shown the Monticello lignite ash significantly differs from most other coal ashes. Testing has shown that the Monticello ash is not filtered effectively by many "standard" bag materials. However, this testing indicates that there are fabrics that show promise of eliminating the ash bleedthrough with little pressure drop penalty. Testing has also shown that injection of low concentrations (10-15 ppm) of ammonia (NH3) into the flue gas significantly decreases ash bleedthrough, so that with NH3 injection "standard" bag materials may perform adequately. Currently, fullcompartment testing of four fabrics, with and without NH3 injection, is under way at the Unit 1 baghouse. The research conducted at the Monticello station is reviewed in this paper and the encouraging results from the full-compartment tests are presented.  相似文献   

18.
An analysis of biomedical waste incineration.   总被引:2,自引:0,他引:2  
The California Air Resources Board (ARB) completed a series of source tests of eight operating biomedical waste incinerators (BMWI) under conditions of typical operation. The emissions of certain metals, and chlorinated dioxins and furans in the flue gases of BMWI are relatively high in comparison to emissions from other combustion sources, such as hazardous waste or municipal waste incinerators of modern design. This study reports on an analysis of the status of the existing regulatory framework and the California data base. Clarification of definitional issues at the federal level is needed to effectively treat BMWI management issues. Although few relationships among combustion parameters and emissions were uncovered, patterns of emissions were evident, suggesting commonality and relationships among the waste stream constituents and emissions. Potential implications for future research, operation of BMWI, controls and source reduction and waste segregation strategies are also discussed.  相似文献   

19.
The California Air Resources Board (ARB) completed a series of source tests of eight operating biomedical waste incinerators (BMWI) under conditions of typical operation. The emissions of certain metals, and chlorinated dioxins and furans in the flue gases of BMWI are relatively high in comparison to emissions from other combustion sources, such as hazardous waste or municipal waste incinerators of modern design. This study reports on an analysis of the status of the existing regulatory framework and the California data base. Clarification of definitional issues at the federal level is needed to effectively treat BMWI management issues. Although few relationships among combustion parameters and emissions were uncovered, patterns of emissions were evident, suggesting commonality and relationships among the waste stream constituents and emissions. Potential implications for future research, operation of BMWI, controls and source reduction and waste segregation strategies are also discussed.  相似文献   

20.
Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental variables that influence baghouse performance. A database was assembled including measured characteristics of coal and dustcake ash, and data describing operating parameters and performance of full-scale and pilotscale baghouses. Predictions of performance can be based on physical characteristics of the ash to be filtered (discussed in Part I of this article), as well as chemical characterizations of the ash, or empirical correlations with the alkali content of the source coal The effects of design and operational variables can be included in these predictions. Baghouse performance can be optimized by exercising proper operating practices and by selecting a filtering fabric and cleaning method matched to the cohesivity of the ash to be collected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号