首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. Most attempts at quantifying contaminant transport have relied on a solution of some form of a well-known governing equation referred to as advection-dispersion-reaction equation. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. As additional contaminated sites are being detected, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time. Moreover, chemical fingerprinting and site records are not sufficient to allow a unique solution for the timing of source releases. The purpose of this paper is to present and review mathematical methods that have been developed during the past 15 years to identify the contaminant source location and recover the time release history.  相似文献   

2.
Contamination source identification is a crucial step in environmental remediation. The exact contaminant source locations and release histories are often unknown due to lack of records and therefore must be identified through inversion. Coupled source location and release history identification is a complex nonlinear optimization problem. Existing strategies for contaminant source identification have important practical limitations. In many studies, analytical solutions for point sources are used; the problem is often formulated and solved via nonlinear optimization; and model uncertainty is seldom considered. In practice, model uncertainty can be significant because of the uncertainty in model structure and parameters, and the error in numerical solutions. An inaccurate model can lead to erroneous inversion of contaminant sources. In this work, a constrained robust least squares (CRLS) estimator is combined with a branch-and-bound global optimization solver for iteratively identifying source release histories and source locations. CRLS is used for source release history recovery and the global optimization solver is used for location search. CRLS is a robust estimator that was developed to incorporate directly a modeler's prior knowledge of model uncertainty and measurement error. The robustness of CRLS is essential for systems that are ill-conditioned. Because of this decoupling, the total solution time can be reduced significantly. Our numerical experiments show that the combination of CRLS with the global optimization solver achieved better performance than the combination of a non-robust estimator, i.e., the nonnegative least squares (NNLS) method, with the same solver.  相似文献   

3.
Contamination source identification is a crucial step in environmental remediation. The exact contaminant source locations and release histories are often unknown due to lack of records and therefore must be identified through inversion. Coupled source location and release history identification is a complex nonlinear optimization problem. Existing strategies for contaminant source identification have important practical limitations. In many studies, analytical solutions for point sources are used; the problem is often formulated and solved via nonlinear optimization; and model uncertainty is seldom considered. In practice, model uncertainty can be significant because of the uncertainty in model structure and parameters, and the error in numerical solutions. An inaccurate model can lead to erroneous inversion of contaminant sources. In this work, a constrained robust least squares (CRLS) estimator is combined with a branch-and-bound global optimization solver for iteratively identifying source release histories and source locations. CRLS is used for source release history recovery and the global optimization solver is used for location search. CRLS is a robust estimator that was developed to incorporate directly a modeler's prior knowledge of model uncertainty and measurement error. The robustness of CRLS is essential for systems that are ill-conditioned. Because of this decoupling, the total solution time can be reduced significantly. Our numerical experiments show that the combination of CRLS with the global optimization solver achieved better performance than the combination of a non-robust estimator, i.e., the nonnegative least squares (NNLS) method, with the same solver.  相似文献   

4.
A framework is developed for simultaneous, optimal design of groundwater contaminant source removal and plume remediation strategies. The framework allows for varying degrees of effort and cost to be dedicated to source removal versus plume remediation. We have accounted for the presence of physical heterogeneity in the DNAPL source, since source heterogeneity controls mass release into the plume and the efficiency of source removal efforts. We considered high and low estimates of capital and operating costs for chemical flushing removal of the source, since these are expected to vary form site to site. Using the lower chemical flushing cost estimates, it is found that the optimal allocation of funds to source removal or plume remediation is sensitive to the degree of heterogeneity in the source. When the time elapsed between the source release and the implementation of remediation was varied, it was found that, except for the longest elapsed time (50,000 days), a combination of partial source removal and plume remediation was most efficient. When first-order, dissolved contaminant degradation was allowed, source removal was found to be unnecessary for the cases where the degradation rate exceeded intermediate values of the first-order rate constant. Finally, it was found that source removal became more necessary as the degree of aquifer heterogeneity increased.  相似文献   

5.
Sources of contamination of groundwater are often difficult to characterize. However, it is essential for effective remediation of polluted groundwater resources. This study demonstrates an application of the linked simulation-optimization based methodology to estimate the release history from spatially distributed sources of pollution at an illustrative abandoned mine-site. In linked simulation-optimization approaches a numerical groundwater flow and transport simulation model is linked to the optimization model. In this study, topographic and geologic characteristics of the abandoned mine-site were simulated using a three-dimensional (3D) numerical groundwater flow model. Transport of contaminant in the groundwater was simulated using a 3D transient advective-dispersive contaminant transport model. Adsorption or chemical reaction of the contaminant was not considered in the contaminant transport model. Adaptive simulated annealing (ASA) was employed for solving the optimization problem. An optimization algorithm generates the candidate solutions corresponding to various unknown groundwater source characteristics. The candidate solutions are used as input in the numerical groundwater transport simulation model to generate the concentration of pollutant in the study area. This information is used to calculate the objective function value, which is utilized by the optimization algorithm to improve the candidate solution. This process continues until an optimal solution is obtained. Optimal solutions obtained in this study show that the linked simulation-optimization based methodology is potentially applicable for the characterization of spatially distributed pollutant sources, typically present at abandoned mine-sites.  相似文献   

6.
Analytical solutions are developed for approximating the time-dependent contaminant discharge from DNAPL source zones undergoing dissolution and other decay processes. The source functions assume a power relationship between source mass and chemical discharge and can consider partial DNAPL source remediation (depletion) at any time after the initial DNAPL release. The source functions are used as a time-dependent boundary condition in an idealized chemical transport model to develop leading order approximations of the plume response to DNAPL source removal. The results suggest that partial DNAPL remediation does not tend to have a dramatic impact on the maximum extent of the plume if very low concentration values are used to define the plume boundaries. However, the solutions show that partial DNAPL removal from the source zone is likely to lead to large reductions in plume concentrations and mass, and it reduces the longevity of the plume. When the mass discharge from the source zone is linearly related to the DNAPL mass, it is shown that partial DNAPL depletion leads to linearly proportional reductions in the plume mass and concentrations.  相似文献   

7.
Release of pollution into rivers is required to be handled with special consideration to environmental standards. For this purpose, it is essential to specify the contribution of each pollution source in contamination of water resources. In this study, a mathematical model is proposed for determining locations and concentration release histories of polluting point sources using measured downstream river concentrations via an inverse problem framework. The inverse solution is based on the integral equation obtained from applying the Green's function method on the one-dimensional advection-dispersion contaminant transport equation. Discretization of this integral equation results in a linear, over-determined and ill-posed system of algebraic equations that are solved by using the Tikhonov regularization method. Several examples and some real field data are investigated to illustrate the abilities of the proposed model. Results imply that the proposed method is effective and can identify the pollution sources in rivers with acceptable accuracy.  相似文献   

8.
Analytical solutions, describing the time-dependent DNAPL source-zone mass and contaminant discharge rate, derived previously in Part I [Falta, R.W., Rao, P.S., Basu, N., this issue. Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response. J. Contam. Hydrol.] are used as a flux-boundary condition in a semi-analytical contaminant transport model. These analytical solutions assume a power relationship between the flow-averaged source concentration, and the source DNAPL mass; the empirical exponent (gamma) is a function of the flow field heterogeneity, DNAPL architecture, and the correlation between them. The DNAPL source strength terms can account for partial source remediation, either at time zero, or at some later time after the DNAPL release. The transport model considers advection, retardation, three-dimensional dispersion, and sequential first-order decay/production of several species. A separate solution is used to compute the time-dependent mass of each contaminant in the plume. A series of examples using different values of gamma shows how the benefits of partial DNAPL source remediation can vary with site conditions. In general, when gamma>1, relatively large short-term reductions in the plume concentrations and mass occur, but the source longevity is not strongly affected. Conversely, when gamma<1, the short-term reductions in the plume concentrations and mass are smaller, but the source longevity can be greatly reduced. In either case, the source remediation effort is much more effective if it is undertaken at an early time, before much contaminant mass has entered the plume. If the remediation effort is significantly delayed, the leading parts of the plume are not affected by the source remediation, and additional control or remediation of the plume itself is required.  相似文献   

9.
This work applies optimization and an Eulerian inversion approach presented by Bagtzoglou and Baun in 2005 in order to reconstruct contaminant plume time histories and to identify the likely source of atmospheric contamination using data from a real test site for the first time. Present-day distribution of an atmospheric contaminant plume as well as data points reflecting the plume history allow the reconstruction and provide the plume velocity, distribution, and probable source. The method was tested to a hypothetical case and with data from the Forest Atmosphere Transfer and Storage (FACTS) experiment in the Duke experimental forest site. In the scenarios presented herein, as well as in numerous cases tested for verification purposes, the model conserved mass, successfully located the peak of the plume, and managed to capture the motion of the plume well but underestimated the contaminant peak.  相似文献   

10.
The following explores the issue of how reductions in contaminant loading to plumes will effect downgradient water quality. An idealized scenario of two adjacent layers of uniform geologic media, one transmissive and the other low permeability, is considered. A high concentration source, similar to a thin DNAPL pool, is introduced in the transmissive layer immediately above the low permeability layer. While the source is active, dissolved constituents are driven along the contact by advection and into the low permeability layer by transverse diffusion. Removing the source reverses the concentration gradient between the layers, driving back diffusion of contaminants from the low permeability layer. Laboratory studies involving four contaminants demonstrate that 15 to 44% of the introduced contaminant moves into the low permeability zone (along a distance of 87 cm in a sand tank) over a period of 25 days. The greatest movement of contaminants into the low permeability zone is seen with the contaminants with the greatest sorption coefficients. A unique two-dimensional analytical solution is developed for the two-layer scenario. Processes addressed include advection; transverse dispersion; adsorption and degradation in the transmissive zones; and diffusion, adsorption, and degradation in the low permeability layer. Laboratory data agree favorably with the analytical solutions. Collectively, the laboratory results and analytical solutions provide a basis for testing other modeling approaches that can be applied to more complex problems. A set of field-scale scenarios are considered using the analytical solutions. Results indicate that improvement in water quality associated with source removal diminish with distance downgradient of the source. Furthermore, contaminant degradation and contaminant adsorption in the stagnant zone are shown to be critical factors governing the timing and magnitude of downgradient improvements in water quality. For five of six scenarios considered, observed improvements in water quality 100 m downgradient of the source fall in the range of 1 to 2 orders of magnitude 15 years after complete source removal. The sixth scenario, involving a contaminant half-life of three years and no adsorption, shows greater than three order of magnitude improvements in downgradient water quality within one year of source removal.  相似文献   

11.
A model for contaminant mass flux in capped sediment under consolidation   总被引:1,自引:0,他引:1  
The paper presents a model for contaminant transport and flux through a consolidating subaqueous sediment and overlying cap. The formulation is based on the effect of consolidation and excess pore pressure dissipation on transient, nonlinear advective component of transport through sediment and the cap. The consolidation is induced by the buoyant weight of the cap when it is placed on the contaminated sediments. One equation is presented for advective-diffusive transport through the sediment that is dependent upon soil/contaminant properties and transient advective velocity, which is calculated from a second equation based on the Terzaghi consolidation theory. A third equation is provided to describe the transport of contaminants in the cap. The parameters, including advective velocity, and boundary conditions used for contaminant transport through the cap are derived from the solution of the first two equations. The finite difference method is used to solve the system of equations for consolidation and contaminant transport. A hypothetical case is analyzed to demonstrate the formulation, and the results show that advection due to consolidation can accelerate breakthrough of contaminant through the cap by orders of magnitude. The derivation and results show that consolidation should be included for cap design, and that reactive caps are essential for delaying and reducing dissolved contaminant flux.  相似文献   

12.
Large seasonal fluctuations of the water table are characteristic of aquifers with a low specific yield, including those fractured, double-porosity aquifers that have significant matrix porosity containing virtually immobile porewater, such as the Chalk of northern Europe. Where these aquifers are contaminated, a strong relationship between water table elevation and contaminant concentration in groundwater is commonly observed, of significance to the assessment, monitoring, and remediation of contaminated groundwater. To examine the processes governing contaminant redistribution by a fluctuating water table within the 'seasonally unsaturated zone', or SUZ, profiles of porewater solute concentrations have been established at a contaminated site in southern England. These profiles document the contaminant distribution in porewater of the Chalk matrix over the SUZ at a greater level of detail than recorded previously. A novel double-porosity solute transport code has been developed to simulate the evolution of the SUZ matrix porewater contaminant profiles, given a fluctuating water table, when the groundwater is initially contaminated and the SUZ is initially free of contamination. The model is simply characterised by: the matrix-fracture porosity ratio, the matrix block geometry, and a characteristic diffusion time. De-saturation and re-saturation of fractures is handled by a new approximation method. Contaminant accumulates in the upper levels of the SUZ, where it is less accessible to mobile groundwater, and acts as a persistent secondary source of contamination once the original source of contamination has been removed or has become depleted. The 'SUZ process' first attenuates the progress of contaminants in groundwater, and subsequently controls the slow release of contamination back to the mobile groundwater, thus prolonging the duration of groundwater contamination by many years. The SUZ process should operate in any fractured, micro-porous lithology e.g. fractured clays and mudstones, making this approach widely applicable.  相似文献   

13.
In contaminant plumes or in the case of ore bodies, a source current density is produced at depth in response to the presence of a gradient of the redox potential. Two charge carriers can exist in such a medium: electrons and ions. Two contributions to the source current density are associated with these charge carriers (i) the gradient of the chemical potential of the ionic species and (ii) the gradient of the chemical potential of the electrons (i.e., the gradient of the redox potential). We ran a set of experiments in which a geobattery is generated using electrolysis reactions of a pore water solution containing iron. A DC power supply is used to impose a difference of electrical potential of 3 V between a working platinum electrode (anode) and an auxiliary platinum electrode (cathode). Both electrodes inserted into a tank filled with a well-calibrated sand infiltrated by a (0.01 mol L− 1 KCl + 0.0035 mol L 1 FeSO4) solution. After the direct current is turned off, we follow the pH, the redox potential, and the self-potential at several time intervals. The self-potential anomalies amount to a few tens of millivolts after the current is turned off and decreases over time. After several days, all the redox-active compounds produced initially by the electrolysis reactions are consumed through chemical reactions and the self-potential anomalies fall to zero. The resulting self-potential anomalies are shown to be much weaker than the self-potential anomalies observed in the presence of an electronic conductor in the laboratory or in the field. In the presence of a biotic or an abiotic electronic conductor, the self-potential anomalies can amount to a few hundred millivolts. These observations point out indirectly the potential role of bacteria forming biofilms in the transfer of electrons through sharp redox potential gradient in contaminant plumes that are rich in organic matter.  相似文献   

14.
Assessment of chemical contamination at large industrial complexes with long and sometimes unknown histories of operation represents a challenging environmental problem. The spatial and temporal complexity of the contaminant may be due to changes in production processes, differences in the chemical transport, and the physical heterogeneity of the soil and aquifer materials. Traditional mapping techniques are of limited value for sites where dozens of chemicals with diverse transport characteristics may be scattered over large spatial areas without documentation of disposal histories. In this context, a site with a long and largely undocumented disposal history of shallow groundwater contamination is examined using principal component analysis (PCA). The dominant chemical groups and chemical "modes" at the site were identified. PCA results indicate that five primary and three transition chemical groups can be identified in the space of the first three eigenvectors of the correlation matrix, which account for 61% of the total variance of the data. These groups represent a significant reduction in the dimension of the original data (116 chemicals). It is shown that each group represents a class of chemicals with similar chemo-dynamic properties and/or environmental response. Finally, the groups are mapped back onto the site map to infer delineation of contaminant source areas for each class of compounds. The approach serves as a preliminary step in subsurface characterization, and a data reduction strategy for source identification, subsurface modeling and remediation planning.  相似文献   

15.
The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7kg/d, and then declined to approximately 2kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure.  相似文献   

16.
Analytical solutions of contaminant transport in multi-dimensional media are significant for theoretical and practical purposes. However, due to the problems for which the solutions are sought which are complex in most of the cases, most available analytical solutions in multi-dimensional media are not given in their closed forms. Integrals are often included in the solution expressions, which may limit the practitioners to use the solutions. In addition, available multi-dimensional solutions for the third-type sources in bounded media are fairly limited. In this paper, a stepwise superposition approach for obtaining approximate multi-dimensional transport solutions is developed. The approach is based on the condition that the one-dimensional solution along the flow direction is known. The solutions are expressed in their closed forms without integrals. The transport media to the solutions are flexible and can be finite, semi-infinite, or infinite in the transverse directions. The solutions subject to the first- and third-type boundary conditions at the inlet with a distributed source over the domain are obtained. The integrals in some known solutions can also be evaluated by the approach if they can be derived to include known longitudinal integrals with respect to time. The accuracy and efficiency of the solutions proposed in this paper are verified through test problems and calculation examples.  相似文献   

17.
Lee ES  Schwartz FW 《Chemosphere》2007,66(11):2058-2066
In situ chemical oxidation (ISCO) using potassium permanganate (KMnO4) has been widely used as a practical approach for remediation of groundwater contaminated by chlorinated solvents like trichloroethylene. The most common applications are active flushing schemes, which target the destruction of some contaminant source by injecting concentrated permanganate (MnO4(-)) solution into the subsurface over a short period of time. Despite many promising results, KMnO4 flushing is often frustrated by inefficiency associated with pore plugging by MnO2 and bypassing. Opportunities exist for the development of new ISCO systems based on KMnO4. The new scheme described in this paper uses controlled-release KMnO4 (CRP) as an active component in the well-based reactive barrier system. This scheme operates to control spreading of a dissolved contaminant plume. Prototype CRP was manufactured by dispersing fine KMnO4 granules in liquid crystal polymer resin matrix. Scanning electron microscope data verified the formation of micro-scale (ID=20-200 microm) secondary capillary permeability through which MnO4(-) is released by a reaction-diffusion process. Column and numerical simulation data indicated that the CRP could deliver MnO4(-) in a controlled manner for several years without replenishment. A proof-of-concept flow-tank experiment and model simulations suggested that the CRP scheme could potentially be developed as a practical approach for in situ remediation of contaminated aquifers. This scheme may be suitable for remediation of sites where accessibility is limited or some low-concentration contaminant plume is extensive. Development of delivery systems that can facilitate lateral spreading and mixing of MnO4(-) with the contaminant plume is warranted.  相似文献   

18.
Raptors are good sentinels of environmental contamination and there is good capability for raptor biomonitoring in Europe. Raptor biomonitoring can benefit from natural history museums (NHMs), environmental specimen banks (ESBs) and other collections (e.g. specialist raptor specimen collections). Europe’s NHMs, ESBs and other collections hold large numbers of raptor specimens and samples, covering long periods of time. These collections are potentially a valuable resource for contaminant studies over time and space. There are strong needs to monitor contaminants in the environment to support EU and national chemical management. However, data on raptor specimens in NHMs, ESBs and other collections are dispersed, few are digitised, and they are thus not easy to access. Specimen coverage is patchy in terms of species, space and time. Contaminant research with raptors would be facilitated by creating a framework to link relevant collections, digitising all collections, developing a searchable meta-database covering all existing collections, making them more visible and accessible for contaminant research. This would also help identify gaps in coverage and stimulate specimen collection to fill gaps in support of prioritised contaminant monitoring. Collections can further support raptor biomonitoring by making samples available for analysis on request.  相似文献   

19.
The methods presented in this work provide a potential tool for characterizing contaminant source zones in terms of mass flux. The problem was conceptualized by considering contaminant transport through a vertical "flux plane" located between a source zone and a downgradient region where contaminant concentrations were measured. The goal was to develop a robust method capable of providing a statement of the magnitude and uncertainty associated with estimated contaminant mass flux values. In order to estimate the magnitude and transverse spatial distribution of mass flux through a plane, the problem was considered in an optimization framework. Two numerical optimization techniques were applied, simulated annealing (SA) and minimum relative entropy (MRE). The capabilities of the flux plane model and the numerical solution techniques were evaluated using data from a numerically generated test problem and a nonreactive tracer experiment performed in a three-dimensional aquifer model. Results demonstrate that SA is more robust and converges more quickly than MRE. However, SA is not capable of providing an estimate of the uncertainty associated with the simulated flux values. In contrast, MRE is not as robust as SA, but once in the neighborhood of the optimal solution, it is quite effective as a tool for inferring mass flux probability density functions, expected flux values, and confidence limits. A hybrid (SA-MRE) solution technique was developed in order to take advantage of the robust solution capabilities of SA and the uncertainty estimation capabilities of MRE. The coupled technique provided probability density functions and confidence intervals that would not have been available from an independent SA algorithm and they were obtained more efficiently than if provided by an independent MRE algorithm.  相似文献   

20.
Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 x 1.53 x 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of approximately 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source. Upon reaching the capillary fringe, the drainage front caused a localized depression of the capillary fringe below the point source because the air-entry pressure decreased in proportion to the decrease in surface tension caused by the surfactant. Eventually, a new capillary fringe height was established. The height of the depressed capillary fringe was proportional to height of the initial capillary fringe multiplied by the relative surface tension of the surfactant solution. The horizontal transport of surfactant in the depressed capillary fringe, driven primarily by the ambient groundwater flow, caused the propagation of a wedge-shaped drying front in the downgradient direction. Comparison of dye transport during the surfactant experiment to dye transport in an experiment without surfactant indicated that because surfactant-induced drainage decreased the storage capacity of the vadose zone, the dye breakthrough time to the water table was more than twice as fast when the contaminant solution contained surfactant. The extensive propagation of the drying front and the effect of vadose zone drainage on contaminant breakthrough time suggest the importance of considering surface tension effects on unsaturated flow and transport in systems containing surface-active organic contaminants or systems, where surfactants are used for remediation of the vadose zone or unconfined aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号