首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu W  Sun L  Zhong M  Zhou Q  Gong Z  Li P  Tai P  Li X 《Chemosphere》2012,89(9):1048-1055
Random amplified polymorphic DNA (RAPD) test is a feasible method to evaluate the toxicity of environmental pollutants on vegetal organisms. Herein, Arabidopsis thaliana (Arabidopsis) plantlets following Cadmium (Cd) treatment for 26 d were screened for DNA genetic alterations by DNA fingerprinting. Four primers amplified 20-23 mutated RAPD fragments in 0.125-3.0 mg L−1 Cd-treated Arabidopsis plantlets, respectively. Cloning and sequencing analysis of eight randomly selected mutated fragments revealed 99-100% homology with the genes of VARICOSE-Related, SLEEPY1 F-box, 40S ribosomal protein S3, phosphoglucomutase, and noncoding regions in Arabidopsis genome correspondingly. The results show the ability of RAPD analysis to detect significant genetic alterations in Cd-exposed seedlings. Although the exact functional importance of the other mutated bands is unknown, the presence of mutated loci in Cd-treated seedlings, prior to the onset of significant physiological effects, suggests that these altered loci are the early events in Cd-treated Arabidopsis seedlings and would greatly improve environmental risk assessment.  相似文献   

2.
Poté J  Rossé P  Rosselli W  Van VT  Wildi W 《Chemosphere》2005,61(5):677-684
This laboratory study investigated the kinetics of leaf and DNA content decomposition in two varieties of tomato (Palmiro and Admiro) after incubation in soil for 35 days. Results revealed that the decrease of dry matter in leaves in both varieties did not follow a single exponential function and was better described by a double exponential model. Composite half-decrease times were 3.4 and 2.4 days for Palmiro and Admiro respectively. The same pattern was observed for DNA mass loss, although this was closer to a single exponential model with composite half-decrease times of 1.5 and 1.4 days. Genomic analysis showed that DNA in dried leaves at room temperature (not inoculated in the soil), remains intact or presents a weak degradation, and DNA extracted from leaves inoculated in non-sterile soil showed degradation after two days. These results indicate that before release an important quantity of DNA may be degraded inside plant tissues during decomposition in soil.  相似文献   

3.
4.

DNA damage may develop at any dose of ionizing radiation. DNA damage activates pathways that regulate cell growth and division or coordinate its replication and repair. The repair pathways, base excision repair (BER) and single-strand break repair (SSBR), can repair such damages efficiently and maintain genome integrity. Loss of this repair process or alteration of its control will be associated with serious outcomes for cells and individuals. This study aimed to determine the relationship between XRCC1 (Arg194Trp, Arg280His, and Arg399Gln), OGG1 (Ser326Cys), and XRCC3 (Thr241Met) SNPs and DNA damage and to identify high-risk individuals with reduced DNA repair capacity. This case-control study was conducted on 80 subjects; 50 subjects working in Clinical Oncology and Nuclear Medicine Department in Assiut University Hospital along with 30 controls. A total of 1 mL blood samples were collected for Single-Cell Gel Electrophoresis Technique (Comet Assay) for detection of DNA damage in those subjects. A total of 3 mL fresh blood samples were collected and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)–based technique. DNA damage detected by comet test was significantly high in IR-exposed workers than control. Statistically high significant difference was found in exposed subjects versus control subjects regarding the frequencies of the variant alleles of hOGG1326, XRCC1280 & 399, and XRCC3241. The level of DNA damage was not affected by OGG1326 SNPs when comparing subjects of wild genotype with those of (pooled) variants either in the exposed staff or in the control group while XRCC1280, 399 and XRCC3241 variant alleles had an influence on the studied DNA damage biomarker. Moreover, genotyping distribution pattern was highly variable in relation to gender. The present study indicated a relationship between DNA damage detected by comet test and single nucleotide polymorphisms in genes coding for DNA certain repair enzymes. Individuals occupationally exposed to low doses of ionizing radiation could be at great risk and more susceptible to the increased DNA damage if they have inherited genetic polymorphism.

  相似文献   

5.
The present study was conducted in order to investigate pro-oxidant activity of dimethoate in liver and brain tissues following sublethal pesticide exposure for 5, 15 and 30 d by using SOD, GPx, CAT enzyme activities and lipid peroxidation as biomarkers as well as DNA damaging potential via detecting% Tail DNA, Tail moment and Olive tail moment as endpoints in erythrocytes of Oncorhynchus mykiss in an in vitro experiment. Antioxidant enzyme activities were found to elicit two staged response which was an initial induction followed by a sharp inhibition in liver tissue while a sustained increase in GPx activity and slight stimulation in SOD activity were detected in brain tissue. Lipid peroxidation showed an ascending pattern throughout the exposure period in both tissues and a decreasing trend was determined in tissue protein levels which was proved to be positively correlated with duration. Similar findings were obtained from outcomes preferred to quantify DNA damage and TM was decided to reflect the extent of damage more sensitively because of determined positive correlation with concentrations applied. Considering these results, it can be concluded that oxidative stress condition evoked by dimethoate could not be responded effectively and genotoxic nature of pesticide was proven by determined clastogenic effect possibly via being an alkylation agent or stimulating the production of reactive species.  相似文献   

6.
利用荧光猝灭光谱和紫外-可见吸收光谱研究了体外DNA对蒽的荧光猝灭机理.结果表明,DNA的紫外-可见光谱没有发生红移现象,通过计算分析不同温度下的荧光猝灭常数和热力学参数,结合两种光谱分析可知DNA对蒽的荧光猝灭属于动态猝灭机理.  相似文献   

7.

Cyprodinil and thiacloprid are two of the most commonly used pesticides in Turkey. It is more likely to reach humans or animals due to their widespread use. This study aims to investigate whether there is a DNA damage risk due to cyprodinil and thiacloprid exposure. Zebrafish, which is used as a model organism in health and environmental research, and comet assay were chosen to demonstrate this damage. Ten zebrafish per group were exposed to 2 different concentrations for each pesticides (0.31 and 0.155 mg/L for cyprodinil and 1.64 and 0.82 mg/L for thiacloprid) for 21 days. After, gills were excised and comet assay was performed. Photos of an average of 50 cells per slide were taken and were analyzed with visual evaluation program. DNA damage was found to be increased in the 0.31 mg/L cyprodinil, 0.82 mg/L thiacloprid, and 1.64 mg/L thiacloprid treatment groups when compared to the control group (p < 0.001). Average tail DNA percentage parameter values were 9.45 ± 0.51, 10.30 ± 0.34, 11.17 ± 0.33, and 2.47 ± 0.06 respectively. Cyprodinil and thiacloprid were identified as genotoxic agents that should be investigated further.

  相似文献   

8.
本文涉及了环境中各种重要类型的化学致癌物并着重讨论了潜在致癌物与DNA加成物的化学反应及其生物影响,它包括简单烷化剂、简单非烷化剂以及代谢活化致突剂。不同烷化剂、简单非烷化剂、代谢活化致突剂与DNA的化学致癌反应部位,无论是在试管中试验还是在活体试验都有很大的不同。特别是N-亚硝基化合物和BaP曾作过详细研究,因为它们只在某个体系的特定器官使之成为恶性。尽管N-硝基化合物对人并不意味着致癌,但它很有可能就是致癌物。相反,某些在动物中致癌性很弱的烷化剂却被列为人体致癌物(氯乙烯、芥子气)或者人体可能的致癌物(硫酸二甲酯、乙烯氧化物)。  相似文献   

9.
10.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

11.
In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system.Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows.Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas.  相似文献   

12.
Dong L  Gao J  Xie X  Zhou Q 《Chemosphere》2012,89(1):44-51
DNA damage and changes in enzyme activities were used as biomarkers to evaluate the genotoxicity and oxidative stress of tetracycline and chlortetracycline on the earthworm Eisenia fetida. The results showed that both antibiotics induced significant genotoxicity on earthworms in a dose-dependent manner (< 0.01) with chlortetracycline having a stronger effect than tetracycline in the short term. The tests on the activities of superoxide dismutase (SOD) and catalase (CAT) enzymes further indicated biochemical stresses induced by the antibiotics. An N-shaped activity pattern was noted with the enzyme activities being stimulated first, then inhibited, and stimulated again with increasing concentration. The induced activity of SOD or CAT could scavenge oxygen free radicals and protect the organisms against oxidative stress by alleviating the corresponding DNA damage. Compared to enzyme activities, DNA damage as a biomarker was more sensitive and is thus more suitable for detecting low concentration exposure and diagnosing the genotoxicity of contaminants in terrestrial environment.  相似文献   

13.
Working quantities of good quality DNA was obtained from three pathogenic forms of the soil-inhabiting fungus, Fusarium oxysporum (FO), which causes economically significant diseases in tomato crops. The mitochondrial, nuclear and ribosomal fractions from each of the DNAs were separated by cesium chloride gradient centrifugations. The data suggest a decrease in nuclear DNA and an increase in mitochondrial DNA correlated with increasing pathogenicity among the three pathogens examined. Ribosomal DNA was detected only in FO, the least pathogenic form.  相似文献   

14.
In order to make regulations that safeguard food and the environment, an understanding of the fate oftransgenes from genetically modified (GM) plants is of crucial importance. A compost experiment including mature transgenic corn plants and seeds of event Bt 176 (Zea mays L.) was conducted to trace the fate of the transgene cryIA(b) during the period of composting. In bin 1, shredded corn plants including seeds were composted above a layer of cow manure and samples from the corn layer were collected at intervals during a 12-month period. The samples were tested for the transgene persistence and microbial counts and also the compost was monitored for temperature. In bin 2, piles of corn seeds, surrounded by sheep manure and straw, were composted for 12 months. A method combining nested polymerase chain reaction (PCR) and southern hybridization was developed for detection of the transgene in compost. The detection sensitivity was 200 copies of the transgene per gram of dry composted corn material. Composting commenced on day 0, and the transgene was detected in specimens from bin 1 on days 0 and 7 but not on day 14 or thereafter. The transgene in corn seeds was not detectable after 12 months of composting in bin 2. Temperatures in both bins rose to about 50 degrees C within 2 weeks and remained above that temperature for about 3 months, even when the ambient temperature dropped below -20 degrees C. Extracts from compost were inoculated onto culture plates and then were incubated at 23 to 55 degrees C. Within the first 2 weeks of composting in bin 1, the counts of bacteria incubated at 55 degrees C increased from 3.5 to 7.5 log10, whereas those incubated at 23 degrees C remained at about 7.5 log10. The counts of fungi incubated at 45 degrees C increased slightly from 2.5 to 3.1 log10, but those incubated at 23 degrees C decreased from 6.3 to 3.0 log10. The rapid degradation of the transgene during composting of Bt corn plants suggested that the composting process could be used for safe disposal of transgenic plant wastes.  相似文献   

15.
Abstract

In order to make regulations that safeguard food and the environment, an understanding of the fate of transgenes from genetically modified (GM) plants is of crucial importance. A compost experiment including mature transgenic corn plants and seeds of event Bt 176 (Zea mays L.) was conducted to trace the fate of the transgene cryIA(b) during the period of composting. In bin 1, shredded corn plants including seeds were composted above a layer of cow manure and samples from the corn layer were collected at intervals during a 12-month period. The samples were tested for the transgene persistence and microbial counts and also the compost was monitored for temperature. In bin 2, piles of corn seeds, surrounded by sheep manure and straw, were composted for 12 months. A method combining nested polymerase chain reaction (PCR) and southern hybridization was developed for detection of the transgene in compost. The detection sensitivity was 200 copies of the transgene per gram of dry composted corn material. Composting commenced on day 0, and the transgene was detected in specimens from bin 1 on days 0 and 7 but not on day 14 or thereafter. The transgene in corn seeds was not detectable after 12 months of composting in bin 2. Temperatures in both bins rose to about 50°C within 2 weeks and remained above that temperature for about 3 months, even when the ambient temperature dropped below ?20°C. Extracts from compost were inoculated onto culture plates and then were incubated at 23 to 55°C. Within the first 2 weeks of composting in bin 1, the counts of bacteria incubated at 55°C increased from 3.5 to 7.5 log 10, whereas those incubated at 23°C remained at about 7.5 log 10. The counts of fungi incubated at 45°C increased slightly from 2.5 to 3.1 log10, but those incubated at 23°C decreased from 6.3 to 3.0 log 10. The rapid degradation of the transgene during composting of Bt corn plants suggested that the composting process could be used for safe disposal of transgenic plant wastes.  相似文献   

16.
提取河流沉积物中DNA是研究河流沉积物微生物多样性的难点之一,实验开发了一种酚与SDS的DNA提取方法,与OMEGA和BioDee 2种DNA提取试剂盒方法进行了比较,并通过DNA纯度、PCR扩增结合16S rDNA克隆文库检验对几种方法进行了评价.结果表明,OMEGA DNA提取试剂盒法方法简单,提取的DNA纯度较高...  相似文献   

17.
Background, aim, and scope  It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with ‘E-wastes’. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. Materials and methods  In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. Results  The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group were significantly higher than in the control group (P = 0.000). The percentage of DNA in the comet tail, tail moment, and Olive tail moment detected by comet assay showed that there was a significant difference in DNA damage in the exposure group (P = 0.000). The chromosome aberration, micronucleus rate, and DNA damage observed in women were significantly higher than those in men. Chromosome aberration and micronuclear rates of both smokers and non-smokers in the exposure group are obviously higher than that in the control group (P = 0.000). Discussion  The use of outdated (and unsafe) ways to deal with E-wastes can lead to exposure to a variety of substances harmful to human health. The components of pollution may enter the human body through the air, drinking water, and food chain to damage human genetic material, resulting in genomic instability. The rates of chromosomal aberration, micronucleus formation, and the degree of DNA damage in women in the group exposed to electronic waste were significantly higher than in men. The reason for this may be concerned with the traditional lifestyle of the local residents or the difference of sensitivity to the exposure to E-wastes or any others. Further investigations are needed to provide evidence to demonstrate this. Conclusions  Here, we report the obviously cytogenetic toxicity to the exposure population by the E-waste pollution for the first time. E-waste pollution may be a potential agent of genetic mutation, and may induce cytogenetic damage within the general population exposed to the pollution. These findings need to be considered, and steps should be taken to protect the current population and future generations from the effects of pollution with E-wastes. Recommendations and perspectives  The above results remind us that the impact of E-waste recycling on environmental quality of Jinghai should be evaluated soon. Moreover, it is urgent for the government to prohibit E-waste import and its processing by outdated ways. The future studies such as pollutant details of drinking water, air, and soil in the area as well as epidemiological investigations on the harmful effect to children must be performed eagerly. All the data available do provide a compelling case for immediate action in both countries to address workplace health and safety and waste management. Qiang Liu and Jia Cao contributed equally to this study and share the first authorship.  相似文献   

18.
19.
Marine macroalgae have evolved a different mechanism to maintain physiological concentrations of essential metal ions and non-essential metals. The objective of the present work was to evaluate the antioxidant response and DNA damage of copper and cadmium ions in three halophytes, namely, Acanthophora spicifera, Chaetomorpha antennina, and Ulva reticulata. Accumulation of copper was significantly higher (P?P?U. reticulata > A. spicifera > C. antennina. DNA damage index analysis supported that copper was significantly (P?相似文献   

20.
In this study, three different soils with contrasting features, spiked with 300 mg benzo[a]pyrene (BaP)/kg dry soil, were incubated at 20 °C and 60% water holding capacity for 540 days. At different time points, BaP and DNA were extracted and quantified, and DNA adducts were quantified by 32P-postlabelling. After 540 days incubation, 69.3, 81.6 and 83.2% of initial BaP added remained in Cruden Bay, Boyndie and Insch soils, respectively. Meanwhile, a significantly different amount of DNA-BaP adducts were found in the three soils exposed to BaP over time. The work demonstrates the concept that DNA adducts can be detected on DNA extracted from soil. Results suggest the technique is not able to directly reflect bioavailability of BaP transformation products. However, this new method provides a potential way to detect mutagenic compounds in contaminated soil and to assess the outcomes of soil remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号