首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao B  Zhu L  Yang K 《Chemosphere》2006,62(5):772-779
Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.  相似文献   

2.
Preparations of organobentonite using nonionic surfactants   总被引:12,自引:0,他引:12  
Shen YH 《Chemosphere》2001,44(5):989-995
Due to hydrophilic environment at its surface, natural bentonite is an ineffective sorbent for nonpolar nonionic organic compounds in water even though it has high surface area. The surface properties of natural bentonite can be greatly modified by simple ion-exchange reactions with large organic cations (cationic surfactants) and this organobentonite is highly effective in removing nonionic organic compounds from water. Cationic surfactant derived organobentonites have been investigated extensively for a wide variety of environmental applications. In this study, the preparation of organobentonite using nonionic surfactants has been investigated for the first time. Results indicate that nonionic surfactants intercalates into the interlamellar space of bentonite and may demonstrate higher sorption capacity than cationic surfactant. It is possible to create large interlayer spacing and high organic carbon content organobentonite by use of nonionic surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths. In addition, nonionic surfactant derived organobentonites are more chemically stable than cationic surfactant derived organobentonites.  相似文献   

3.
The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems.  相似文献   

4.
Oleszczuk P  Xing B 《Chemosphere》2011,85(8):1312-1317
High adsorption capacity of carbon nanotubes (CNTs) may greatly determine the bioavailability and mobility of organic contaminants. The fate of contaminants adsorbed by CNTs may be substantially influenced by surfactants used both in the synthesis and dispersion of CNTs. The aim of this research was to determine the influence of surfactants (nonionic - TX100, cationic - CTAB and anionic - SDBS) on adsorption and desorption of oxytetracycline (OTC) by multiwalled carbon nanotubes (MWCNTs). The surfactants used had a substantial influence on both adsorption and desorption of OTC. The direction of changes depended clearly on the type of surfactant. In case of anionic SDBS, increased adsorption of OTC by MWCNTs was observed. The presence of TX100 and CTAB decreased the adsorption of OTC by MWCNTs significantly. The increase of OTC adsorption after ultrasonic treatment was observed in case of MWCNTs alone and MWCNTs with SDBS and TX100. However, ultrasonic treatment caused OTC adsorption decrease in the presence of CTAB. The change of pH had also an important effect on OTC adsorption in the presence of surfactants. Depending on the surfactant and pH, an increase or decrease of OTC adsorption was observed. The presence of surfactants increased OTC desorption from MWCNTs significantly as follows: SDBS = CTAB < TX100. The results obtained suggest new potential threats and constitute a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of MWCNTs and surfactants.  相似文献   

5.
Zhao B  Zhu L  Li W  Chen B 《Chemosphere》2005,58(1):33-40
The effects of mixed anionic-nonionic surfactants, sodium dodecyl sulfate (SDS) mixed with Tween80 (TW80), Triton X-100 (TX100) and Brij35 respectively on the solubility enhancement and biodegradation of phenanthrene in the aqueous phase were investigated. The efficiency of solubilization and biodegradation of phenanthrene in single-, and mixed-surfactant solutions were also compared. The critical micellar concentrations (CMCs) of mixed surfactants were sharply lower than that of sole SDS. The degree of solubility enhancements by the mixed surfactants followed the order of SDS-TW80>SDS-Brij35>SDS-TX100. Synergistic solubilization was observed in the mixed surfactant solutions, in which the molar ratios of SDS to nonionic surfactant were 1:0, 9:1, 7:3, 5:5, 3:7, 1:9 and 0:1 while the total concentration of surfactants was kept at 5.0 and 10.0 mM, respectively. SDS-Brij35 exhibited more significant degree of synergistic solubility enhancement for phenanthrene. The mixed surfactants exhibited no inhibitory effect on biodegradation of phenanthrene. Substantial amounts of the solubilized phenanthrene by mixed surfactants were completely degraded by phenanthrene-degrading microorganisms within 96 h. The results suggested that anionic-nonionic surfactants would improve the performance of remediation of PAH-contaminated soils.  相似文献   

6.
With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.  相似文献   

7.
Huang Q  Hong CS 《Chemosphere》2000,41(6):871-879
Titanium dioxide-mediated photodegradation of Polychlorinated biphenyls (PCBs) in soil/aqueous systems with added fluorinated surfactant was investigated. PCBs can bind tightly to organic matter in the soil, especially in aged, contaminated soil. Experiments showed an effective PCB photocatalytic degradation in mixed systems of soil/clay with anionic fluorinated surfactant FC-143 and TiO2. The FC-143 surfactant is stable in this photochemical process. PCB degradation rates in samples followed the order: spiked clay > spiked soil > Hudson River bank soil. The results suggest that anionic fluorinated surfactant may form semimicelles and/or admicelles on the surface of positively charged TiO2. The hydrophobic surface of TiO2 can provide a nonpolar phase that acts as a partioning medium for hydrophobic PCBs. Therefore, PCBs in soil can be released to the semimicelle and/or admicelle on the TiO2 surface and are effectively photodegraded in a dispersion containing anionic fluorinated surfactant. The combination of surfactant extraction and photooxidation forms the basis for a novel two-stage process for the removal and destruction of PCBs from soil.  相似文献   

8.
Sensitized photodechlorination of polychlorinated biphenyl, PCB 138, in three different surfactant solutions was studied. The sensitizer of choice was leuco-methylene blue, which was produced in situ from methylene blue using either triethylamine or sodium borohydride. Three types of surfactants, anionic (SDS), neutral (TWEEN 80), and cationic (CTAB) at different concentrations were investigated. The neutral and cationic surfactants were found to be more effective than anionic. In each case the surfactant concentration was found to play a significant role in the rate of dechlorination. For different sensitized systems (triethylamine or sodium borohydride), a different product distribution and a different pathway of dechlorination was observed.  相似文献   

9.
采用截留分子量(MWCO)为5000 Dalton、1000 Dalton的聚砜超滤膜,MWCO为1 kDa的再生纤维素超滤膜;采用十二烷基苯磺酸钠(SDBS)、曲拉通100(TritonX-100)、吐温80(Tween-80)、烷基多苷(APG)为表面活性剂,用胶团强化超滤工艺去除水中双酚A。研究了不同材质和截留分子量的超滤膜、表面活性剂浓度、膜操作压力、溶液pH和溶液中电解质等因素对该工艺的影响。结果表明,SDBS对双酚A有较好的去除效果,去除率在80%以上。在H+和Na+存在的条件下,双酚A的截留率增加,透过液中SDBS浓度降低。SDBS与非离子表面活性剂的复配可以提高双酚A截留率,降低透过液中SDBS的浓度,复配效果优劣顺序为Tween-80TritonX-100APG。  相似文献   

10.
Rao P  He M 《Chemosphere》2006,63(7):1214-1221
Adsorption of anionic surfactant (sodium dodecylbenzenesulfonate, SDBS) and nonionic surfactant (an alcohol ethoxylates with 12 carbons and 9 oxyethyl groups, A12E9) mixtures, widely used as the major constituents of synthetic detergents in China and become the most common pollutants in the environment, on soils was conducted to investigate the behavior of mixed surfactants in soils. The effects of addition order and mixing ratios of two surfactants, associated with pH and ion strength in solutions, on adsorptions were considered. The results show that saturated adsorption amount of SDBS and A12E9 on soils decreased respectively when A12E9 was added into soils firstly compared with that secondly, possibly resulting from the screening of A12E9 to part adsorption sites on soils and the hydrocarbon chain-chain interactions between SDBS and A12E9. The adsorption of SDBS and A12E9 on soils was enhanced each other at pre-plateau region of isotherms. At plateau region of isotherms, the adsorption of SDBS on soils decreased with the increase of molar fraction of A12E9 in mixed surfactant solutions, while that of A12E9 increased except the molar ratio of SDBS to A12E9 0.0:1.0. With the increase of pH in mixed surfactant solutions, adsorption amount of SDBS and A12E9 on soils decreased, respectively. The reduction of ion strength in soils resulted in the decrease of adsorption amount of SDBS and A12E9 on soils, respectively.  相似文献   

11.
研究了用表面活性剂去除黄土中柴油类污染物。选用阴离子表面活性剂十二烷基苯磺酸钠和十二烷基硫酸钠 (LAS和SDS)和阳离子表面活性剂十六烷基三甲基溴化铵 (CTAB)对污染的土壤进行解吸实验 ,表明阴离子表面活性剂浓度从 0 .1%增加到 1.0 %时 ,其柴油的去除率可达 2 0 % ,而阳离子表面活性剂去除作用不甚明显。利用摩尔增溶比MSR值求得LAS和SDS的logKm 值为 4.5 5 2和 3 .63 0 ,这和理论的计算值很接近  相似文献   

12.
A new approach using an anionic/nonionic mixed surfactant, sodium dodecyl sulphate (SDS) with Triton X-100 (TX100), was utilized for the desorption of phenanthrene from an artificial contaminated natural soil in an aim to improve the efficiency of surfactant remediation technology. The experimental results showed that the presence of SDS not only reduced the sorption of TX100 onto the natural soil, but also enhanced the solubilization of TX100 for phenanthrene, both of which resulted in the distribution of phenanthrene in soil-water systems decreasing with increasing mole fraction of SDS in surfactant solutions. These results can be attributed to the formation of mixed micelles in surfactant solution and the corresponding decrease in the critical micelle concentration of TX100 in mixed solution. The batch desorption experiments showed that the desorption percentage of phenanthrene from the contaminated soil with mixed solution was greater than that with single TX100 solution and appeared to be positively related to the mole fraction of SDS in surfactant solution. Thus, the anionic/nonionic mixed surfactants are more effective for the desorption of phenanthrene from the contaminated soil than a single nonionic surfactant.  相似文献   

13.
Lippold H  Gottschalch U  Kupsch H 《Chemosphere》2008,70(11):1979-1986
Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization.

In this paper, solubilization of 14C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene–humic interaction. This explanation is based on octanol–water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.  相似文献   


14.
胶团强化超滤法(MEUF)去除废水中氯苯的研究   总被引:1,自引:0,他引:1  
研究了3种单一表面活性剂十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTMAB)、聚氧乙烯失水山梨脂肪酸酯醇醚(TW80)和混合表面活性剂TW80-SDS对氯苯(CB)的强化超滤,以期为有机废水胶团强化超滤技术提供参考。结果表明,进料液静置时间对去除率无显著影响,而振荡时间在1 h后对去除率影响不大。氯苯的去除率随进料液中表面活性剂浓度的增大而增大,单一的表面活性剂对氯苯的去除效果顺序为TW80CTMABSDS,且表面活性剂对氯苯的去除效果与表面活性剂的临界胶束浓度值(CMC)、亲水-亲油平衡值(HLB)呈负相关。阴-非混合表面活性剂TW80-SDS对氯苯的去除效果明显强于单一的SDS,且去除率随着非离子表面活性剂质量分数的增加而增加。渗透通量随着进料液中表面活性剂浓度的增加而下降,单一表面活性剂种类对渗透通量的影响顺序为SDSTW80CTMAB,混合表面活性剂中随着非离子表面活性剂质量分数的增加而渗透液的渗透通量越低。  相似文献   

15.
Water solubility of polycyclic aromatic hydrocarbons (PAHs), viz, naphthalene and phenanthrene, in micellar solutions at 25 °C was investigated, using two series of different binary mixtures of anionic and nonionic surfactants. Tween 80 and Brij-35 were used as nonionic surfactants whereas fatty acids or amphiphilic cyclodextrins (Mod-β-CD) synthesized in our laboratory were used as anionic ones. Solubilization capacity has been quantified in terms of the molar solubilization ratio and the micelle-water partition coefficient, using UV-visible spectrophotometry. Anionic surfactants exhibited less solubilization capacity than nonionics. The mixtures between Tween 80 and Mod-β-CD did not show synergism to increase the solubilization of PAHs. On the other hand, the mixtures formed by Tween 80 and fatty acids at all mole fractions studied produced higher enhancements of the solubility of naphthalene than the individual surfactants. The critical micellar concentration of the mixtures of Tween 80/sodium laurate was determined by surface tension measurements and spectrofluorimetry using pyrene as probe. The system is characterized by a negative interaction parameter (β) indicating attractive interactions between both surfactants in the range of the compositions studied.  相似文献   

16.
Wastewater treatment plants receive organic contaminants, such as pesticides, which reach the sewage system from domestic, industrial or agricultural activities. In wastewater, which is a complex mixture of organic and inorganic compounds, biotic or abiotic degradation of contaminants can be affected by the presence of co-solutes. The photodecomposition in natural sunlight of two neonicotinoid insecticides, thiamethoxam and thiacloprid, was investigated in wastewater, aqueous extracts of sewage sludge and in aqueous surfactant solutions, which are abundant in wastewater. Dissipation in the dark was also studied in wastewater, due to reduction of transmitted sunlight in wastewater ponds. With regard to photolysis, thiamethoxam degraded rapidly in all the aqueous solutions. Among them sewage sludge extracts slightly modified (average half-life 17.6 h), wastewater increased (13.7 h) and non-ionic surfactants led, as a family, to the highest dissipation rates (average 6.2 h), with respect to control water (18.7 h). Additionally this pesticide also underwent a slower biodegradation process in wastewater in the dark under anaerobic conditions (around 25 d). A metabolite of thiamethoxam from the biological decomposition in wastewater was identified by HPLC/MS. On the other hand thiacloprid was found to be resistant to photo- and biodecomposition and remained almost unchanged during the experimental periods in all the tested media.  相似文献   

17.
表面活性剂清洗处理重度石油污染土壤   总被引:5,自引:1,他引:4  
为了优化表面活性剂清洗处理重度石油污染土壤的方法和具体洗脱条件参数,采集山东省东营市胜利油田污染土壤,研究了阴离子-非离子混合表面活性剂对该土壤中石油类污染物的去除效果。应用化学热洗原理,主要考查了表面活性剂配比、投加量、清洗温度及清洗助剂对去除效果的影响。实验得到的清洗处理最佳条件为:使用LAS与TX-100质量比为8∶2的组合表面活性剂,总表面活性剂浓度为3 g/L,助剂硅酸钠浓度为5 g/L,75℃条件下搅拌1 h。清洗后土壤含油量从20%下降到4.6%,去除率达到76.9%。废水回用实验表明,清洗处理的废水对土壤中石油烃类物质仍有一定的去除效果。废水回用比从30%到100%时,对土壤中石油烃的去除率都可达到55%以上。对废水进行二次回用时仍能去除18.8%的污染物。  相似文献   

18.
Effect of surfactants on desorption of aldicarb from spiked soil   总被引:2,自引:0,他引:2  
Xu J  Yuan X  Dai S 《Chemosphere》2006,62(10):1630-1635
Surfactant enhanced desorption of aldicarb from spiked soil was investigated in this paper. Anionic (sodium dodecyl benzene sulphonate, SDBS), cationic (hexadecyl trimethyl ammonium bromide, HTAB) and nonionic (octyl polyethylene glycol phenyl ether, OP) surfactants were tested to determine their optimal desorption conditions including desorption time, mixing speed and surfactant concentrations. The results showed that the optimal operating conditions were obtained at 2 h, 150 rpm, and surfactants concentrations were 1000, 100, and 200 mg l(-1) for SDBS, OP, and HTAB, respectively. The paper also investigated the desorption efficiency of mixture of different kinds of surfactants for aldicarb-spiked soil, and found that anionic-nonionic surfactant mixtures gave the best desorption efficiency up to 77%, while anionic-cationic surfactant mixture gave a poor desorption efficiency similar to water, suggesting that mixture of anionic-nonionic surfactants were highly promising on remediation of aldicarb-contaminated soil.  相似文献   

19.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

20.
Simultaneous sorption of lead and chlorobenzene by organobentonite   总被引:10,自引:0,他引:10  
Lee JJ  Choi J  Park JW 《Chemosphere》2002,49(10):1309-1315
Clays or organoclays have been used as a barrier to prevent the transport of hazardous contaminants in landfills. However, clays are known to effectively sorb mostly inorganic contaminants, while organoclays are mainly used for organic contaminants. Since the organoclays are basically clay particles modified with cationic surfactants, there might exist an optimal coverage of cationic surfactant on the clay particles to sorb both inorganic and organic contaminants. In order to determine the optimal mass of cationic surfactants on the bentonites, sodium bentonites were treated with various ratios of hexadecyltrimethylammonium (HDTMA) to bentonites. Chlorobenzene and lead were selected as representative contaminants. When either chlorobenzene or lead exists as a single contaminant, chlorobenzene sorption increased with increasing HDTMA to bentonite ratios, and lead sorption decreased with increasing HDTMA to bentonite ratios. Sorption of chlorobenzene was a function of HDTMA coverage on the bentonites, while lead sorption was much more influenced by the initial lead concentration rather than the mass of HDTMA added to the bentonites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号