首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) have long been recognized as important environmental toxicants. Despite a plethora of information on the fate and effects of parent PAHs, relatively little is known about the environmental fate and toxicity of ketone- and quinone-substituted PAH oxidation products (termed oxy-PAHs), particularly in the aquatic environment. This study begins to fill that gap using embryos of the Japanese medaka (Oryzias latipes) as a model species. The genotoxic potential of two environmentally relevant oxy-PAHs, acenaphthenequinone and 7,12-benz[a]anthracenquinone, was assessed using the comet assay. We found that both oxy-PAHs could cause significant increases in DNA damage after only 48 h of exposure at the lowest concentrations tested (5 μg/L). Comparisons of the genotoxic potential between these oxy-PAHs and their corresponding parent PAHs (acenaphthene and benz[a]anthracene) and a well-known mutagenic PAH, benzo[a]pyrene, indicated similar potencies among all five of these compounds, particularly after longer (7 day) exposures. This study demonstrates the mutagenic potential of oxy-PAHs to an in vivo fish embryo model and points out the need for further study of their environmental occurrence and biologic effects.  相似文献   

2.
The heavy metal and polycyclic aromatic hydrocarbons (PAHs) contents were evaluated in surface soil and plant samples of 18 wild species collected from 3 typical industrial sites in South Central China. The accumulative characteristics of the plant species for both heavy metal and PAHs were discussed. The simultaneous accumulation of heavy metal and PAHs in plant and soil was observed at all the investigated sites, although disparities in spatial distributions among sites occurred. Both plant and soil samples were characterized by high accumulation for heavy metal at smelting site, moderate enrichment at coke power and coal mining sites, whereas high level of PAHs (16 priority pollutants according to US Environmental Protection Agency) at coke power site, followed sequentially by coal mining and smelting sites. Based on the differences of heavy metal and PAH accumulation behaviors of the studied plant species, heavy metal and PAH accumulation strategies were suggested: Pteris vittata L. and Pteris cretica L. for As and PAHs, Boehmeria nivea (L.) Gaud for Pb, As, and PAHs, and Miscanthus floridulu (Labnll.) Warb for Cu and PAHs. These native plant species could be proposed as promising materials for heavy metal and PAHs combined pollution remediation.  相似文献   

3.
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades leading to high concentrations in sediments of contaminated areas. To evaluate the consequences of long-term chronic exposure to PAHs, zebrafish were exposed, from their first meal at 5 days post fertilisation until they became reproducing adults, to diets spiked with three PAH fractions at three environmentally relevant concentrations with the medium concentration being in the range of 4.6–6.7 μg g?1 for total quantified PAHs including the 16 US-EPA indicator PAHs and alkylated derivatives. The fractions used were representative of PAHs of pyrolytic (PY) origin or of two different oils of differing compositions, a heavy fuel (HO) and a light crude oil (LO). Fish growth was inhibited by all PAH fractions and the effects were sex specific: as determined with 9-month-old adults, exposure to the highest PY inhibited growth of females; exposure to the highest HO and LO inhibited growth of males; also, the highest HO dramatically reduced survival. Morphological analysis indicated a disruption of jaw growth in larvae and malformations in adults. Intestinal and pancreatic enzyme activities were abnormal in 2-month-old exposed fish. These effects may contribute to poor growth. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can promote lethal and sublethal effects which are likely to be detrimental for fish recruitment.  相似文献   

4.
Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2–0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.  相似文献   

5.
The increase of anthropogenic activities on coastal areas induces discharges of polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystem. PAH effects depend not only on their concentration and the way of contamination but also on the different developmental stages of the organism. Zebrafish were exposed to relevant concentration of pyrolytic PAHs from the first meal (i.e., 5-day post fertilization, dpf) to mature adults. Parental effect of this type of exposure was evaluated through the assessment of aerobic metabolic scope, cardiac frequency, and cardiac mRNA expression on larval and/or embryo progeny of contaminated fish. Our results suggest that cardiac frequency increased in larval descendants of fish exposed to the environmental concentration of pyrolytic PAHs (i.e., 5 ng.g?1 of food), while a lack of effect on aerobic metabolism in 5 dpf larvae was highlighted. A surexpression of mRNA related to the cardiac calcium transporting ATPase atp2a2a, a protein essential for contraction, is in accordance with this increasing cardiac frequency. Even if cardiac development genes cmlc1 and tnnt2a were not affected at early life stages tested, complementary work on cardiac structure could be interesting to better understand PAHs action.  相似文献   

6.
Chronic concentrations of polycyclic aromatic hydrocarbons (PAHs) have been commonly detected in international estuaries ecosystems. Reliable indicators still need to be found in order to properly assess the impact of PAHs in fish. After an in vivo chronic exposure to hydrocarbons, the enzymatic activity of 7-ethoxyresorufin O-deethylase (EROD) and the antioxidant defense system were assessed in sea bass, Dicentrarchus labrax. A total of 45 fish were exposed to the water-soluble fraction of Arabian crude oil, similar to a complex pollution by hydrocarbons chronically observed in situ, while 45 other control fish sustained the same experimental conditions in clean seawater. Fish samples were made after a 21-day exposure period and after a 15-day recovery period in clean fresh water. Throughout the experiment, liver EROD activity was significantly higher in contaminated fish than in control fish. In addition, nonenzymatic (total glutathione) and enzymatic (GPx, SOD, and CAT) antioxidant defense parameters measured in liver were not significantly different in fish. Furthermore, in gills, glutathione content had significantly increased while SOD activity had significantly decreased in contaminated fish compared to controls. On the other hand, CAT and GPx activities were not affected. Chronic exposure to PAHs disturbing the first step (SOD) and inhibiting the second step (GPx and CAT) could induce oxidative stress in tissues by the formation of oxygen radicals. After the postexposure period, there was no significant difference between control and contaminated fish in any of the antioxidant defense parameters measured in gills, attesting to the reversibility of the effects.  相似文献   

7.
Twenty-nine sediment samples were collected from Lake Chaohu, a shallow eutrophic lake in Eastern China, and were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to determine the spatial distribution and exposure risks of PAHs. Three receptor models, the principal component analysis-multiple linear regression (PCA-MLR) model, the positive matrix factorization (PMF) model, and the Unmix model, were used in combination with the PAHs diagnostic ratios to investigate the potential source apportionment of PAHs. A clear gradient in the spatial distribution and the potential toxicity of PAHs was observed from west to east in the sediments of Lake Chaohu. ∑15PAH concentrations and the TEQ were in the range of 80.82-30 365.01 ng g?1 d.w. and 40.77-614.03, respectively. The highest values of the aforementioned variables were attributed to urban–industrial pollution sources in the west lake region, and the levels decreased away from the river inlets. The three different models yielded excellent correlation coefficients between the predicted and measured levels of the 15 PAH compounds. Similarly, source apportionment results were derived from the three receptor models and the PAH diagnostic ratios, suggesting that the highest contribution to the PAHs was from coal combustion and wood combustion, followed by vehicular emissions. The PMF model yielded the following contributions to the PAHs from gasoline combustion, diesel combustion, unburned petroleum emissions, and wood combustion: 34.49, 24.61, 16.11, 13.01, and 11.78 %, respectively. The PMF model produced more detailed source apportionment results for the PAHs than the PCA-MLR and Unmix models.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that can be present at high levels as mixtures in polluted aquatic environments. Many PAHs are potent mutagens and several are well-known carcinogens. Despite numerous studies on individual compounds, little is known about the toxicity of PAHs mixtures that are encountered in environmental situations. In the present work, zebrafish were continuously fed from 5 days post-fertilisation to 14 months post-fertilisation (mpf) with a diet spiked with fractions of either pyrolytic (PY), petrogenic light oil (LO), or petrogenic heavy oil (HO) origin at three concentrations. A decrease in survival was identified after 3 mpf in fish fed with the highest concentration of HO or LO, but not for PY. All PAH fractions caused preneoplastic and neoplastic disorders in long-term-exposed animals. Target tissues were almost exclusively of epithelial origin, with the bile duct epithelium being the most susceptible to chronic exposure to all PAH fractions, and with germ cells being the second most responsive cells. Significantly higher incidences of neoplasms were observed with increasing PAH concentration and exposure duration. The most severe carcinogenic effects were induced by dietary exposure to HO compared to exposure to LO or PY (45, 30 and 7 %, respectively, after 9 to 10 months of exposure to an intermediate concentration of PAHs). In contrast, earliest carcinogenic effects were detected as soon as 3 mpf after exposure to LO, including the lowest concentration, or to PY. PAH bioactivation and genotoxicity in blood was assessed by ethoxyresorufin-O-deethylase activity quantification and comet and micronuclei assays, respectively, but none of these were positive. Chronic dietary exposure of zebrafish to PAH mixtures results in carcinogenotoxic events that impair survival and physiology of exposed fish.  相似文献   

9.
It has been amply demonstrated that exposure to fine particulate matter, containing polycyclic aromatic hydrocarbons (PAHs), may have adverse effects on human health, affecting especially the respiratory and cardiovascular systems. Among population, school-age children and elders present particular susceptibilities and unique exposures to environmental factors. The study presented in this paper belongs to the Project EXPAH, founded by the European (EU) LIFE+ instrument, and consists of the personal monitoring of five elementary school children and four elders during the spring and the summer/autumn of the year 2012 in the city of Rome, Italy. The average exposure, expressed as the sum of eight high-molecular-weight PAHs, resulted equal to 0.70 ng/m3 (SD?=?0.37) for children and 0.59 ng/m3 (SD?=?0.23) for the elderly people. The mean levels of gravimetric PM2.5 were equal to 23 μg/m3 (SD?=?10) and 15 μg/m3 (SD?=?4) for children and elders, respectively. During spring and summer seasons, personal BaPeq resulted well below the EU Air Quality reference value of 1 ng/m3. The personal monitoring average values were in the same order of magnitude with available indoor and outdoor environmental data in Rome during the same periods, for both PAHs and PM2.5. The results suggest that, during non-heating seasons, the personal exposure to PAHs in the city of Rome can be mainly ascribed to the urban background, especially traffic emissions and road dust resuspension; secondhand cigarette smoke can be also considered another possible source of PAHs personal exposure.  相似文献   

10.
A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g?1 sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic?Arabian Light?Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g?1 sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.  相似文献   

11.
Smoked meat is widely consumed in many areas, particularly in rural southwest China. High concentrations of polycyclic aromatic hydrocarbons (PAHs) in smoked meat could lead to adverse dietary exposure and health risks. In this study, 27 parent PAHs (pPAHs), 12 nitrated PAHs (nPAHs), and 4 oxygenated PAHs (oPAHs) were measured in coal- and wood-smoked meats. The median concentrations of pPAHs, nPAHs, and oPAHs were as high as 1.66?×?103, 4.29, and 20.5 ng/g in the coal-smoked meat and 2.54?×?103, 7.32, and 9.26 ng/g in the wood-smoked meat, respectively. Based on the relative potency factors of individual PAHs, the calculated toxic equivalent (TEQ) values of all pPAHs were 22.1 and 75.1 ng TEQ/g for the wood- and coal-smoked meats, respectively. The highest concentrations of PAHs can be found in the surface layer of skin and decrease exponentially with depth. Surface PAH concentrations correlated with concentrations of PAHs in household air and with the concentration in emission exhaust. Migration of PAHs from surface to interior portions of meat is faster in lean than in fat or skin, and oPAHs and pPAHs can penetrate deeper than pPAHs. The penetration ability of PAHs is negatively correlated with the molecular weight.  相似文献   

12.
Atmospheric polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that represent a risk not only to humans, but to all living organisms. High-molecular weight PAHs are more toxic than lighter relatives, and also have a higher tendency to bind onto air particles (i.e., particle matter, PM). PM is a major constituent of air pollution. Adequate assessment of the biological impact of PM requires the analysis, not only of the effects on human health, but also on the environment. Since the aquatic systems work as a natural sink to these air pollutants, assessing the effects of particle-bound PAHs on aquatic organisms may further characterize its potential aquatic toxicity, also providing simple and low-cost alternative assays to investigate PM biological effects in vivo. We review the current scientific literature, addressing the atmospheric PAHs fate, transformation and deposition, pertinent particle-bound PAHs toxicity data, and the potential aquatic toxic burden. Conceptual and experimental procedures that could improve future investigations and risk assessments are also considered.  相似文献   

13.
In this work, principal component analysis/multiple linear regression (PCA/MLR), positive matrix factorization (PMF), and UNMIX model were employed to apportion potential sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from middle and lower reaches of the Yellow River, based on the measured PAHs concentrations in sediments collected from 22 sites in November 2005. The results suggested that pyrogenic sources were major sources of PAHs. Further analysis indicated that source contributions of PAHs compared well among PCA/MLR, PMF, and UNMIX. Vehicles contributed 25.1–36.7 %, coal 34.0–41.6 %, and biomass burning and coke oven 29.2–33.2 % of the total PAHs, respectively. Coal combustion and traffic-related pollution contributed approximately 70 % of anthropogenic PAHs to sediments, which demonstrated that energy consumption was a predominant factor of PAH pollution in middle and lower reaches of the Yellow River. In addition, the distributions of contribution for each identified source category were studied, which showed similar distributed patterns for each source category among the sampling sites.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that are toxic, mutagenic, and carcinogenic. We investigated the horseradish peroxidase (HRP)-catalyzed oxidation of PAHs in water containing N,N-dimethylformamide. Four PAHs (anthracene, phenanthrene, pyrene, and fluoranthene) were investigated using single-PAH and mixed-PAH systems. The results provide useful information regarding the preferential oxidation of anthracene over other PAHs regardless of the reaction time, enzyme dosage, and hydrogen peroxide concentration. The removal of PAHs was found to be very strongly correlated with the ionization potential (IP), and much greater PAH oxidation was observed at a lower IP. The oxidation of anthracene was specifically pH- and temperature-dependent, with the optimal pH and temperature being 8.0 and 40 °C, respectively. The redox mediators 1-hydroxybenzotriazole and veratryl alcohol promoted the transformation of anthracene by HRP; 9,10-anthraquinone was the main product detected from the anthracene oxidation system. The results of this study not only provide a better understanding of the oxidation of PAHs by utilizing a plant biocatalyst, but also provide a theoretical basis for establishing the HRP-catalyzed treatment of PAH-contaminated wastewater.  相似文献   

15.
This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil–water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM–biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.  相似文献   

16.
Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable.  相似文献   

17.
A natural sediment spiked with three individual polycyclic aromatic hydrocarbons (PAHs; pyrene, phenanthrene and benzo[a]pyrene) was used to expose zebrafish embryos and larvae during 4 days. The total PAH concentration was 4.4 μg g?1 which is in the range found in sediment from contaminated areas. Quantification of metabolites in the larvae after exposure confirmed the actual contamination of the larvae and indicated an active metabolism especially for pyrene and benzo[a]pyrene. After a transfer in a clean medium, the larvae were reared to adulthood and evaluated for survival, growth, reproduction, and behavior. Measured endpoints revealed a late disruption of growth (appearing at 5 months) and a trend toward a lower reproductive ability. Adults of embryos exposed to sediment spiked with PAHs displayed lethargic and/or anxiety-like behaviors. This latter behavior was also identified in offspring at larval stage. All together, these effects could have detrimental consequences on fish performances and contribution to recruitment.  相似文献   

18.
In the last 10 years, behavior assessment has been developed as an indicator of neurotoxicity and an integrated indicator of physiological disruption. Polycyclic aromatic hydrocarbon (PAH) release into the environment has increased in recent decades resulting in high concentrations of these compounds in the sediment of contaminated areas. We evaluated the behavioral consequences of long-term chronic exposure to PAHs, by exposing zebrafish to diets spiked with three PAH fractions at environmentally relevant concentrations. Fish were exposed to these chemicals from their first meal (5 days postfertilization) until they became reproducing adults (at 6 months old). The fractions used were representative of PAHs of pyrolytic (PY) origin and of two oils differing in composition (a heavy fuel oil (HO) and a light crude oil (LO)). Several tests were carried out to evaluate circadian spontaneous swimming activity, responses to a challenge (photomotor response), exploratory tendencies, and anxiety levels. We found that dietary PAH exposure was associated with greater mobility, lower levels of exploratory activity, and higher levels of anxiety, particularly in fish exposed to the HO fraction and, to a lesser extent, the LO fraction. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can induce behavioral disruptions resulting in poorer fish performance.  相似文献   

19.
Oil spills occur commonly, and chemical compounds originating from oil spills are widespread in the aquatic environment. In order to monitor effects of a bunker oil spill on the aquatic environment, biomarker responses were measured in eelpout (Zoarces viviparus) sampled along a gradient in Göteborg harbor where the oil spill occurred and at a reference site, 2 weeks after the oil spill. Eelpout were also exposed to the bunker oil in a laboratory study to validate field data. The results show that eelpout from the Göteborg harbor are influenced by contaminants, especially polycyclic aromatic hydrocarbons (PAHs), also during “normal” conditions. The bunker oil spill strongly enhanced the biomarker responses. Results show elevated ethoxyresorufin-O-deethylase (EROD) activities in all exposed sites, but, closest to the oil spill, the EROD activity was partly inhibited, possibly by PAHs. Elevated DNA adduct levels were also observed after the bunker oil spill. Chemical analyses of bile revealed high concentrations of PAH metabolites in the eelpout exposed to the oil, and the same PAH metabolite profile was evident both in eelpout sampled in the harbor and in the eelpout exposed to the bunker oil in the laboratory study.  相似文献   

20.
In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号