首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

2.
Abstract

Air quality monitoring was conducted at a rural site with a tower in the middle of California’s San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/M2.5 Air Quality Study. Measurements at the surface and on a tower at 90 m were collected in Angiola, CA, from ecember 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

3.
Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

4.
Data from the 1990 San Joaquin Valley Air Quality Study/Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., down-wind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   

5.
ABSTRACT

Data from the 1990 San Joaquin Valley Air Quality Study/ Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/ AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., downwind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   

6.
Future air pollution emissions in the year 2030 were estimated for the San Joaquin Valley (SJV) in central California using a combined system of land use, mobile, off-road, stationary, area, and biogenic emissions models. Four scenarios were developed that use different assumptions about the density of development and level of investment in transportation infrastructure to accommodate the expected doubling of the SJV population in the next 20 years. Scenario 1 reflects current land-use patterns and infrastructure while scenario 2 encouraged compact urban footprints including redevelopment of existing urban centers and investments in transit. Scenario 3 allowed sprawling development in the SJV with reduced population density in existing urban centers and construction of all planned freeways. Scenario 4 followed currently adopted land use and transportation plans for the SJV. The air quality resulting from these urban development scenarios was evaluated using meteorology from a winter stagnation event that occurred on December 15th, 2000 to January 7th 2001. Predicted base-case PM2.5 mass concentrations within the region exceeded 35 μg m?3 over the 22-day episode. Compact growth reduced the PM2.5 concentrations by ~1 μg m?3 relative to the base-case over most of the SJV with the exception of increases (~1 μg m?3) in urban centers driven by increased concentrations of elemental carbon (EC) and organic carbon (OC). Low-density development increased the PM2.5 concentrations by 1–4 μg m?3 over most of the region, with decreases (0.5–2 μg m?3) around urban areas. Population-weighted average PM2.5 concentrations were very similar for all development scenarios ranging between 16 and 17.4 μg m?3. Exposure to primary PM components such as EC and OC increased 10–15% for high density development scenarios and decreased by 11–19% for low-density scenarios. Patterns for secondary PM components such as nitrate and ammonium ion were almost exactly reversed, with a 10% increase under low-density development and a 5% decrease under high density development. The increased human exposure to primary pollutants such as EC and OC could be predicted using a simplified analysis of population-weighted primary emissions. Regional planning agencies should develop thresholds of population-weighted primary emissions exposure to guide the development of growth plans. This metric will allow them to actively reduce the potential negative impacts of compact growth while preserving the benefits.  相似文献   

7.
The San Joaquin Valley (SJV) in California has one of the most severe particulate air quality problems in the United States during the winter season. In the current study, measurements of particulate matter (PM) smaller than 10 microm in aerodynamic diameter (PM10), fine particles (PM18), and ultrafine particles (PM0.1) made during the period December 16, 2000-February 3, 2001, at six locations near or within the SJV are discussed: Bodega Bay, Davis, Sacramento, Modesto, Bakersfield, and Sequoia National Park. Airborne PM1.8 concentrations at the most heavily polluted site (Bakersfield) increased from 20 to 172 microg/m3 during the period December 16, 2000-January 7, 2001. The majority of the fine particle mass was ammonium nitrate driven by an excess of gas-phase ammonia. Peak PM0.1 concentrations (8-12 hr average) were approximately 2.4 microg/m3 measured at night in Sacramento and Bakersfield. Ultrafine particle concentrations were distinctly diurnal, with daytime concentrations approximately 50% lower than nighttime concentrations. PMO.1 concentrations did not accumulate during the multiweek stagnation period; rather, PMO.1 mass decreased at Bakersfield as PM1.8 mass was increasing. The majority of the ultrafine particle mass was associated with carbonaceous material. The high concentrations of ultrafine particles in the SJV pose a potential serious public health threat that should be addressed.  相似文献   

8.
The distribution of historical ozone levels for a region is tabulated as a function of its prevailing synoptic and mesoscale influences. Meteorological patterns are determined sequentially from extended records of hourly surface wind measurements sampling relevant low-level flows. A visualization method is presented to readily indicate the likelihoods for exceedances to occur under a variety of meteorological conditions. The study domain is San Joaquin Valley (SJV) of California, which is divided into three subregions (North, Central, and South). Each day from May–October of 1996–2004 is labeled using synoptic (single-day) and mesoscale (intra-day) patterns. Emissions levels are assumed roughly constant for this period following the introduction of reformulated gasoline to California. Synoptic motions largely control the regional SJV ozone pollution potential; the same single-day patterns are identified for all three SJV subregions. Additionally, a unique mesoscale flow feature is identified in each subregion that strongly affects its ozone levels: flows through minor Coast Range gaps for N-SJV, the Fresno Eddy for C-SJV, and flows through Mojave Pass for S-SJV. The strength of each mesoscale feature is characterized using 1-h surface u or v wind components that explain local ozone pollution potentials.  相似文献   

9.
10.
Aerosol carbon sampling methods and biases were evaluated during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) and Fresno Supersite programs. PM2.5 sampling was conducted using Desert Research Institute (DRI) sequential filter samplers (SFS) from December 1999 through February 2001 at two urban sites (Fresno and Bakersfield), one regional transport site (Angiola), and two boundary sites (Bethel Island and Sierra Nevada Foothills) during CRPAQS in the San Joaquin Valley (SJV). Additional filter-based sampling was done in Fresno as part of the US Environmental Protection Agency (EPA) Supersites program. Organic carbon (OC) and elemental carbon (EC) concentrations were higher during winter (December-February) than summer (June-August) and this trend was most pronounced at Fresno and Bakersfield. OC and EC displayed similar diurnal trends during winter and summer at Fresno and during winter at Angiola. The diurnal pattern at Angiola reflected the transport of secondary pollutants to the site. Collocated measurements of OC and EC on undenuded quartz-fiber filters were made at Fresno with the DRI SFS and the Andersen FRM and RAAS samplers. All average differences in OC between samplers were less than their respective measurement uncertainties. Positive and negative OC biases were evaluated at Fresno using the Andersen RAAS sampler with carbon-denuded and undenuded channels with Teflon-membrane and quartz-fiber filter pairs. Differences between the denuded particle OC and that obtained by subtracting the quartz-behind-Teflon or quartz-behind-quartz OC from the undenuded quartz-fiber front filter were less than twice their measurement uncertainties in most cases. Particulate OC in the denuded channel agreed most closely with the difference between undenuded front and backup quartz-fiber OC.  相似文献   

11.
The U.S. Environmental Protection Agency (EPA) currently classifies Imperial County, CA, as a nonattainment area for PM10 (particulate matter [PM] < or = 10 microm in diameter), and this region suffers from high rates of chronic bronchitis and childhood asthma. Although high annual and daily average PM levels can have negative health and economic effects, recent studies have identified an association between adverse health effects and short-term PM spikes of tens of micrograms per cubic meter. This study identified PM episodes in Calexico/Mexicali that involve PM concentration spikes with concentrations up to 10 times greater than those reported to cause adverse health effects. These episodes appear to be relatively common during the winter months, are associated with wind speeds below 2 m/sec and stable boundary level heights below 500 m, and can comprise a large portion of the 24-hr PM levels. The organic composition of the PM10 samples collected during the low-wind/ high-PM episodes differed from that collected at other times. However, a preliminary source attribution identified only one significant difference between the source classes: agricultural burning accounted for 6.7% of organic-fraction PM10 for low-wind/high-PM episodes versus 0.25% at other times. This preliminary source attribution also revealed that motor vehicles were the most important relative contributor to organic PM10.  相似文献   

12.
Identification of hot spots for urban fine particulate matter (PM(2.5)) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM(2.5) patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM(2.5) concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM(2.5) variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations.  相似文献   

13.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

14.
This paper describes the large-scale weather features that typically are associated with relatively rapid and slow atmospheric dispersion. Specific examples for some well-known air pollution incidents are illustrated and discussed. Particular attention is paid to the features of quasi-stagnating anticyclones, the typical weather system associated with persistent and extensive areas of sluggish dispersion. On the large scale, the basic quantitative parameters of dispersion over urban areas are the mixing height and the wind speed averaged through that height. These parameters are defined and discussed. Mean morning and afternoon mixing heights and wind speeds are presented for four locations across the United States, illustrating their diurnal, seasonal, and spatial variations. Also for these four locations, data are given on the climatological occurrence of periods during which critical values of the basic parameters were not exceeded. The spatial distributions of mixing heights and average wind speeds during a well-documented air pollution episode are presented.  相似文献   

15.
Ambient air monitoring for organic acids in PM2.5 was conducted at several locations in California. During the study, it was found that oxalic acid (ethanedioc acid) was the most abundant organic acid found in the PM2.5 fraction. Samples from Azuza (in southern California), San Jose (in the San Francisco Bay area), and Fresno (in central California), a PM2.5 Super Site, were collected in 1999 and analyzed. The results for oxalic acid concentrations during this monitoring effort are presented.  相似文献   

16.
ABSTRACT

The spatial and temporal distributions of particle mass and its chemical constituents are essential for understanding the source-receptor relationships as well as the chemical, physical, and meteorological processes that result in elevated particulate concentrations in California’s San Joaquin Valley (SJV). Fine particulate matter (PM2.5), coarse particulate matter (PM10), and aerosol precursor gases were sampled on a 3-hr time base at two urban (Bakersfield and Fresno) and two non-urban (Kern Wildlife Refuge and Chowchilla) core sites in the SJV during the winter of 1995–1996.

Day-to-day variations of PM2.5 and PM10 and their chemical constituents were influenced by the synoptic-scale meteorology and were coherent among the four core sites. Under non-rainy conditions, similar diurnal variations of PM2.5 and coarse aerosol were found at the two urban sites, with concentrations peaking during the nighttime hours. Conversely, PM2.5 and coarse aerosol peaked during the morning and afternoon hours at the two non-urban sites. Under rainy and foggy conditions, these diurnal patterns were absent or greatly suppressed.

In the urban areas, elevated concentrations of primary pollutants (e.g., organic and elemental carbons) during the late afternoon and nighttime hours reflected the impact from residential wood combustion and motor vehicle exhaust. During the daytime, these concentrations decreased as the mixed layer deepened. Increases of secondary nitrate and sulfate concentrations were found during the daylight hours as a result of photochemical reactions. At the non-urban sites, the same increases in secondary aerosol concentrations occurred during the daylight hours but with a discernable lag time. Concentrations of the primary pollutants also increased at the non-urban sites during the daytime. These observations are attributed to mixing aloft of primary aerosols and secondary precursor gases in urban areas followed by rapid transport aloft to non-urban areas coupled with photochemical conversion.  相似文献   

17.
Quantitative information from the 1995 Integrated Monitoring Study (IMS95) is used to develop a conceptual model, which describes the chemical characteristics and the physical processes responsible for the accumulation of PM in the San Joaquin Valley of California. One significant finding of the conceptual model is the sensitivity of ammonium nitrate (46% of winter PM2.5) and nitric acid to oxidants, which may be VOC-sensitive rather than NOx-sensitive. Key gaps in current knowledge are identified using the conceptual model, e.g., the relative sensitivity of winter oxidants to VOC and NOx, mechanistic details of secondary organic aerosol formation, mechanisms of dispersion under calm conditions, and the importance of dry deposition. Some recommendations are also provided for the formulation of air quality models suitable to address the accumulation of PM in the San Joaquin Valley.  相似文献   

18.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

19.
ABSTRACT

The Segmented-Plume Primary Aerosol Model (SPPAM) has been developed over the past several years. The earlier model development goals were simply to generalize the widely used Industrial Source Complex Short-Term (ISCST) model to simulate plume transport and dispersion under light wind conditions and to handle a large number of roadway or line sources. The goals have been expanded to include development of improved algorithm for effective plume transport velocity, more accurate and efficient line and area source dispersion algorithms, and recently, a more realistic and computationally efficient algorithm for plume depletion due to particle dry deposition. A performance evaluation of the SPPAM has been carried out using the 1983 PNL dual tracer experimental data. The results show the model predictions to be in good agreement with observations in both plume advection-dispersion and particulate matter (PM) depletion by dry deposition. For PM2.5 impact analysis, the SPPAM has been applied to the Rubidoux area of California. Emission sources included in the modeling analysis are: paved road dust, diesel vehicular exhaust, gasoline vehicular exhaust, and tire wear particles from a large number of roadways in Rubidoux and surrounding areas. For the selected modeling periods, the predicted primary PM2.5 to primary PM10 concentration ratios for the Rubidoux sampling station are in the range of 0.39–0.46. The organic fractions of the primary PM2.5 impacts are estimated to be at least 34–41%. Detailed modeling results indicate that the relatively high organic fractions are primarily due to the proximity of heavily traveled roadways north of the sampling station. The predictions are influenced by a number of factors; principal among them are the receptor locations relative to major roadways, the volume and composition of traffic on these roadways, and the prevailing meteorological conditions.  相似文献   

20.
Almond harvest accounts for substantial PM10 (particulate matter [PM] < or =10 microm in nominal aerodynamic diameter) emissions in California each harvest season. This paper evaluates the effects of using reduced-pass sweepers and lower harvester separation fan speeds (930 rpm) on lowering PM emissions from almond harvesting operations. In-canopy measurements of PM concentrations were collected along with PM concentration measurements at the orchard boundary; these were used in conjunction with on-site meteorological data and inverse dispersion modeling to back-calculate emission rates from the measured concentrations. The harvester discharge plume was measured as a function of visible plume opacity during conditioning operations. Reduced-pass sweeping showed the potential for reducing PM emissions, but results were confounded because of differences in orchard maturity and irrigation methods. Fuel consumption and sweeping time per unit area were reduced when comparing a reduced-pass sweeper to a conventional sweeper. Reducing the separation fan speed from 1080 to 930 rpm led to reductions in PM emissions. In general, foreign matter levels within harvested product were nominally affected by separation fan speed in the south (less mature) orchard; however, in samples conditioned using the lower fan speed from the north (more mature) orchard, these levels were unacceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号