首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Application of poultry litter to cropland may increase metal mobility, because the soluble organic ligands in poultry litter can form water-soluble complexes with metals. In this study, one uncontaminated soil and two metal-contaminated soils were sampled. A portion of the uncontaminated soil was amended with Zn, Pb, and Cd at rates of 400, 200, and 8 mg kg(-1), respectively. Packed soil columns were leached with H2O, EDTA, CaCl2, and poultry litter extract (PLE) solutions separately. No leaching of Zn, Cd, and Pb with the PLE was found in the uncontaminated soil. The retention of PLE-borne Zn indicated the potential for Zn accumulation in the soil. A large portion of the metals was leached from the metal-amended soil, and EDTA solubilized more Zn, Cd, and Pb than CaCl2 and PLE. In the metal-contaminated soils, the leaching of Zn and Cd with PLE was consistently larger than that for CaCl2, indicating that these metals were mobilized by organic ligands. The PLE did not mobilize Pb in these soils. The utilization of poultry litter in metal-contaminated soils might accelerate the movement of Zn and Cd in soil profiles.  相似文献   

2.
Leaching of heavy metals from contaminated soils using EDTA   总被引:40,自引:0,他引:40  
Ethylenediaminetetraacetic acid (EDTA) extraction of Zn, Cd, Cu and Pb from four contaminated soils was studied using batch and column leaching experiments. In the batch experiment, the heavy metals extracted were virtually all as 1:1 metal-EDTA complexes. The ratios of Zn, Cd, Cu and Pb of the extracted were similar to those in the soils, suggesting that EDTA extracted the four heavy metals with similar efficiency. In contrast, different elution patterns were obtained for Zn, Cd, Cu and Pb in the column leaching experiment using 0.01 M EDTA. Cu was either the most mobile or among the most mobile of the four heavy metals, and its peak concentration corresponded with the arrival of full strength EDTA in the leachate. The mobility of Zn and Cd was usually slightly lower than that of Cu. Pb was the least mobile, and its elution increased after the peaks of Cu and Zn. Sequential fractionations of leached and un-leached soils showed that heavy metals in various operationally defined fractions contributed to the removal by EDTA. Considerable mobilisation of Fe occurred in two of the four soils during EDTA leaching. Decreases in the Fe and Mn oxide fraction of heavy metals after EDTA leaching occurred in both soils, as well as in a third soil that showed little Fe mobilisation. The results suggest that the lability of metals in soil, the kinetics of metal desorption/dissolution and the mode of EDTA addition were the main factors controlling the behaviour of metal leaching with EDTA.  相似文献   

3.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

4.
Wang XP  Shan XQ  Zhang SZ  Wen B 《Chemosphere》2004,55(6):811-822
Currently, several single extraction methods are used for the evaluation of the phytoavailability of metals using pot experiments. A systematic comparison, however, is lacking. It is especially true for the field studies. This study was to investigate the phytoavailability of trace elements to vegetables grown on metal-contaminated soils under the field conditions. All soils collected were typical calcareous soils in northern China. Four frequently used methods using CaCl2, diethylenetriaminepentaacetic acid (DTPA), CH3COOH, and water as extractants were compared for phyto-availability. The concentrations of metals extracted by these four extraction methods ranged from 3.42 to 815, 1.51- 6965, 0.732-24473, 0.688-7863, 0.246-685, 1.99-5337 0.203-4649 ng/g for Cr, Ni, Zn, Cu, Cd, Pb and REEs, respectively. Simple correlation analysis indicated that a significant correlation (Cr: r = 0.5411**; Zn: r = 0.6352**; Cd: r = 0.6979**; Pb: r = 0.5537** and REEs: r = 0.5185** -0.6684**) was observed between the CaCl2-extractable metals in soil solution and that in Chinese cabbage. In addition, soil pH, organic matter (OM), and cation exchange capacity (CEC) also affect the phytoavailability. An empirical model was developed to express the combined effect of soil properties on the phytoavailability. The stepwise multiple regression analysis demonstrated that the phytoavailability of trace elements strongly correlated with the extractable fraction by CaCl2, total metal concentration in soils, and soil pH, OM, CEC. This model can describe approximately 75-95% of the variability of metal uptake and the r2 values ranged from 0.741** to 0.954**, which were much better than the single correlation analysis. For celery and cole, a strong correlation was obtained for Cr, Ni, Zn, Cu, Cd, La, Ce, Pr and Nd. For spinach and Chinese cabbage, however, a positive correlation was only observed for 1 and 3 metals, respectively. Generally, the developed empirical model can integrate the combined effects of soil properties, extractable metal fractions in soil solutions and plant species on the phytoavailability of metals to vegetables in the field conditions.  相似文献   

5.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

6.
Heavy metals in agricultural soils of the Pearl River Delta,South China   总被引:49,自引:0,他引:49  
There is a growing public concern over the potential accumulation of heavy metals in agricultural soils in China owing to rapid urban and industrial development and increasing reliance on agrochemicals in the last several decades. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake by crops may also affect food quality and safety. The present study is aimed at studying heavy metal concentrations of crop, paddy and natural soils in the Pearl River Delta, one of the most developed regions in China. In addition, some selected soil samples were analyzed for chemical partitioning of Co, Cu, Pb and Zn. The Pb isotopic composition of the extracted solutions was also determined. The analytical results indicated that the crop, paddy and natural soils in many sampling sites were enriched with Cd and Pb. Furthermore, heavy metal enrichment was most significant in the crop soils, which might be attributed to the use of agrochemicals. Flooding of the paddy soils and subsequent dissolution of Mn oxides may cause the loss of Cd and Co through leaching and percolation, resulting in low Cd and Co concentrations of the paddy soils. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the Fe-Mn oxide and residual fractions, while Zn was predominantly found in the residual phase. A significant percent fraction of Cu was bound in the organic/sulphide and residual phases. Based on the 206Pb/207Pb ratios of the five fractions, it was evident that some of the soils were enriched with anthropogenic Pb, such as industrial and automobile Pb. The strong associations between anthropogenic Pb and the Fe-Mn oxide and organic/sulphide phases suggested that anthropogenic Pb was relatively stable after deposition in soils.  相似文献   

7.
Lai HY  Chen ZS 《Chemosphere》2004,55(3):421-430
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from contaminated soils. Vetiver grass (Vetiver zizanioides) has strong and long root tissues and is a potential phytostabilization plant since it can tolerate and grow well in soils contaminated with multiple heavy metals. Soil was moderately artificially contaminated by cadmium (20 mg/kg), zinc (500 mg/kg), and lead (1000 mg/kg) in pot experiments. Three concentrations of Na2-EDTA solution (0, 5, and 10 mmol/kg soil) were added to the contaminated soils to study the influence of EDTA solution on phytoextraction by rainbow pink or phytostabilization by vetiver grass. The results showed that the concentrations of Cd, Zn, and Pb in a soil solution of rainbow pink significantly increased following the addition of EDTA (p < 0.05). The concentrations of Cd and Pb in the shoots of rainbow pink also significantly increased after EDTA solution was applied (p < 0.05), but the increase for Zn was insignificant. EDTA treatment significantly increased the total uptake of Pb in the shoot, over that obtained with the control treatment (p < 0.001), but it did not significantly increase the total uptake of Cd and Zn. The concentrations of Zn and Pb in the shoots of rainbow pink are significantly correlated with those in the soil solution, but no relationship exists with concentrations in vetiver grass. The toxicity of highly contaminating metals did not affect the growth of vetiver grass, which was found to grow very well in this study. Results of this study indicate that rainbow pink can be considered to be a potential phytoextraction plant for removing Cd or Zn from metal-contaminated soils, and that vetiver grass can be regarded as a potential phytostabilization plant that can be grown in a site contaminated with multiple heavy metals.  相似文献   

8.
Organic matter (OM) plays a key role in microbial response to soil metal contamination, yet little is known about how the composition of the OM affects this response in Mediterranean calcareous agricultural soils. A set of Mediterranean soils, with different contents and compositions of OM and carbonate and fine mineral fractions, was spiked with a mixture of Cd, Cu, Pb, and Zn and incubated for 12 months for aging. Microbial (Biolog Ecoplates) and enzyme activities (dehydrogenase, DHA; β-galactosidase, BGAL; phosphatase, PHOS; and urease, URE) were assessed and related to metal availability and soil physicochemical parameters. All enzyme activities decreased significantly with metal contamination: 36–68 % (DHA), 24–85 % (BGAL), 22–72 % (PHOS), and 14–84 % (URE) inhibitions. Similarly, catabolic activity was negatively affected, especially phenol catabolism (~86 % compared to 25–55 % inhibition for the rest of the substrates). Catabolic and DHA activities were negatively correlated with ethylenediaminetetraacetic acid (EDTA)-extractable Cd and Pb, but positively with CaCl2, NaNO3, and DTPA-extractable Cu and Zn. Soluble OM (water- and hot-water-soluble organic C) was positively related to enzyme and catabolic activities. Recalcitrant OM and fine mineral fractions were positively related to BGAL and PHOS. Conversely, catabolic activity was negatively related to clay and positively to silt and labile OM. Results indicate that the microbial response to metal contamination is highly affected by texture and OM composition.  相似文献   

9.

Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg−1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  相似文献   

10.
Multi-step leaching of Pb and Zn contaminated soils with EDTA   总被引:3,自引:0,他引:3  
Finzgar N  Lestan D 《Chemosphere》2007,66(5):824-832
The efficiency of multi-step leaching of heavy metal contaminated soils was evaluated in a laboratory scale study. Four different soils contaminated with Pb (1136+/-16-4424+/-313mgkg(-1)) and Zn (288+/-5-5489+/-471mgkg(-1)) were obtained from industrial sites in the Mezica Valley, Slovenia and Príbram district, Czech Republic. Different dosages (2.5-40mmolkg(-1)) of ethylenediamine tetraacetate (EDTA) were used to treat soils in 1-10 leaching steps. Higher EDTA dosages did not result in a proportional gain in Pb and Zn removal. EDTA extracted Pb more efficiently than Zn from three of four tested soils. The percentage of removed Zn did not exceed 75% regardless of the soil, EDTA dosage and leaching steps. Significantly more Pb (in three of four soils) and Zn were removed from soils when the same amount of EDTA was applied in several leaching steps. The interference of major soil cations Fe and Ca with EDTA complexation as a possible factor affecting Pb and Zn removal efficiency with multi-step heap leaching was examined and is discussed. The results of our study indicate that, for some soils, using multi-step leaching instead of the more traditionally used single dose EDTA treatment could improve heavy metal removal efficiency and thus the economics of soil remediation.  相似文献   

11.
This study reports the chemical fractionation of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated technosoils of two former smelting and mining areas using two sequential extraction schemes. The extraction schemes used in this study were the Tessier’s scheme and a modified BCR scheme. The fractions were rearranged into four equivalent fractions defined as acid soluble, reducible, oxidizable, and residual to compare the results obtained from two sequential extraction schemes. Surface soils were samples from a waste landfill contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (MDN; North France) and from a settling basin contaminated with PTE such as As, Pb, and Sb located at La Petite Faye (LPF; Limoges, France). The study of the Zn, Pb, Cd, As, and Sb partitioning in the acid soluble, reducible, oxidizable, and residual fractions of the technosoils revealed that Zn, Cd, and Pb were mainly associated with the acid soluble and reducible fractions for MDN site, while As, Sb, and Pb were associated with residual fraction for LPF site. Fractionation results indicate that the percentages of Zn, Pb, Cd, As, and Sb extracted in Fe–Mn oxide bound fraction of Tessier’s scheme were always higher than those extracted by modified BCR scheme. This may be attributed to the stronger Tessier’s scheme conditions used to extract this fraction. In contrast the percentages of Zn, Pb, Cd, As, and Sb extracted in the organic fraction of the modified BCR scheme were always higher than those of the Tessier’s scheme. The order of mobility of PTE was as follows: Cd?>?Zn?>?Pb in MDN site and As?>?Sb?>?Pb in LPF site. PTE were distributed in all soil fractions, with the most relevant enrichments in extractable and residual fractions. A significant amount of Cd, Pb, and Zn were rather mobile, which suggests that these elements can be readily available to plants and soil organisms.  相似文献   

12.
Finzgar N  Lestan D 《Chemosphere》2006,63(10):1736-1743
The feasibility of a novel EDTA-based soil heap leaching method with treatment and reuse of extractants in a closed process loop was evaluated on a laboratory scale. Ozone and UV irradiation were used for oxidative decomposition of EDTA-metal complexes in extractants from Pb (1243 mg kg(-1)) and Zn (1190 mg kg(-1)) contaminated soil. Released metals were absorbed in a commercial metal absorbent Slovakite. Six-consecutive additions of 2.5 mmol kg(-1) EDTA (total 15 mmol kg(-1) EDTA) removed 49.6 +/- 0.6% and 19.7 +/- 1.7% of initial total Pb and Zn from soil (4.6 kg) packed in 22 cm high columns. The efficiency of extraction was similar to small-scale simulations of heap leaching (15 0 g of soil), where EDTA used in the same manner removed 49.7 +/- 1.0% and 13.7 +/- 0.4% of Pb and Zn. The new heap leaching method produced discharge extractant with fairly low final concentrations of Pb, Zn and EDTA (1.98 +/- 2.17 mg l(-1), 4.55 +/- 2.36 mg l(-1), and 0.05 +/- 0.04 mM, respectively), which could presumably be reduced even further with continuation of treatment. The results of our study indicate that for soils contaminated primarily with Pb, treating the EDTA extractants with ozone/UV and reuse of extractants enables efficient soil heap leaching with very little or no wastewater generation, easy control over emissions, and lowers the requirements for process water.  相似文献   

13.
Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests.  相似文献   

14.
The distribution of Pb, Ni and Zn in two contaminated soils was determined before and after treating the soils with an EDTA solution. After the EDTA extraction, the proportion of Pb accumulated in the acid-extractable fraction considerably increased, which was related to the greater degree of metal extraction from the other fractions. EDTA was also able to extract certain amounts of Pb, Zn and Ni from the silicate matrix, which implied that these extractable amounts were not so strongly fixed to the residual fraction as previously supposed. As a consequence, after EDTA application, metal content (especially Pb) remained more weakly adsorbed to soil components (more easily leachable), potentially favouring the application of phytoremediation technologies. The extraction recoveries (for only one application) were generally low for the three metals (33-37% for Pb, 5-11% for Ni and 14-19% for Zn), although this fact is an advantage as plants would not be able to assimilate very high mobilised contents of metals.  相似文献   

15.
Influence of organic acids on the transport of heavy metals in soil   总被引:9,自引:0,他引:9  
Schwab AP  Zhu DS  Banks MK 《Chemosphere》2008,72(6):986-994
Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable.  相似文献   

16.
The effect of two earthworm species, Lumbricus rubellus and Eisenia fetida, on the fractionation/bioavailability of Pb and Zn before and after soil leaching with EDTA was studied. Four leaching steps with total 12.5 mmol kg(-1) EDTA removed 39.8% and 6.1% of Pb and Zn, respectively. EDTA removed Pb from all soil fractions fairly uniformly (assessed using sequential extractions). Zn was mostly present in the chemically inert residual soil fraction, which explains its poor removal. Analysis of earthworm casts and the remainder of the soil indicated that L. rubellus and E. fetida actively regulated soil pH, but did not significantly change Pb and Zn fractionation in non-remediated and remediated soil. However, the bioavailability of Pb (assessed using Ruby's physiologically based extraction test) in E. fetida casts was significantly higher than in the bulk of the soil. In remediated soil the Pb bioavailability in the simulated stomach phase increased by 5.1 times.  相似文献   

17.
Chen Y  Li X  Shen Z 《Chemosphere》2004,57(3):187-196
In a pot experiment, the potential use of 10 plant species, including six dicotyledon species and four monocotyledon species, was investigated for the EDTA-enhanced phytoextraction of Pb from contaminated soil. Mung bean and buckwheat had a higher sensitivity to the EDTA treatment in soils. In the 2.5 and 5.0 mmol kg(-1) EDTA treatments, the Pb concentrations in the shoots of the six dicotyledon species ranged from 1,000 to 3,000 mg kg(-1) of dry matter, which were higher than those of the monocotyledon species. The highest amount of phytoextracted Pb (2.9 mg Pb pot(-1)) was achieved in sunflowers, due to the high concentration of Pb in their shoots and large biomass, followed by corns (1.8 mg Pb pot(-1)) and peas (1.1 mg Pb pot(-1)). The leaching behavior of heavy metals as a result of applying EDTA to the surface of the soil was also investigated using short soil-leaching columns (9.0-cm diameter, 20-cm height) by the percolation of artificial rainfall. About 3.5%, 15.8%, 13.7% and 20.6% of soil Pb, Cu, Zn and Cd, respectively, were leached from the soil columns after the application of 5.0 mmol kg(-1) of EDTA. The growth of sunflowers in the soil columns had little effect on the amount of metals that were leached out. This was probably due to the shallowness of the layer of soil, the short time-span of the uptake of metals by the plant and the plant's simple root systems.  相似文献   

18.
The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism.  相似文献   

19.
Previously recommended rhizosphere-based method (RHIZO) applied to moist rhizosphere soils was integrated with moist bulk soils, and termed adjusted-RHIZO method (A-RHIZO). The A-RHIZO and RHIZO methods were systematically compared with EDTA, DTPA, CaCl2 and the first step of the Community Bureau of Reference (BCR1) methods for assessing metal phytoavailability under field conditions. Results suggested that moist bulk soils are equally suited or even better than rhizosphere soils to estimate metal phytoavailability. The A-RHIZO method was preferred to other methods for predicting the phytoavailability of Ni, Cu, Zn, Cd, Pb and Mn to wheat roots with correlation coefficients of 0.730 (P<0.001), 0.854 (P<0.001), 0.887 (P<0.001), 0.739 (P<0.001), 0.725 (P<0.001) and 0.469 (P<0.05), respectively. When including soil properties, other extraction methods were also able to predict phytoavailability reasonably well for some metals. Soil pH, organic matter and Fe-Mn oxide contents, and cation-exchange capacity mostly influenced the extraction and phytoavailability of metals.  相似文献   

20.
Gupta AK  Sinha S 《Chemosphere》2006,64(1):161-173
A pot experiment was carried out to study the single and sequential extractions of metals in different tannery sludge amendment and the potential of the plant of Sesamum indicum L. var. T55 (sesame) for the removal of metals from tannery waste contaminated site. The metal extraction efficiency obtained with each extractants was slightly different and follow the order; EDTA>DTPA>NH(4)NO(3)>NaNO(3)>CaCl(2). The correlation analysis between extractable metals in the different amendments of sludge and metal accumulation in the plant (lower and upper parts) showed better correlation for most of the tested metals with EDTA extraction. In this study, a sequential extraction technique was applied on different amendments of tannery sludge. The results showed that Mn, Zn, Cr and Cd were mostly associated with Fe-Mn oxide fraction in most of the amendments, K and Ni was found in residual (RES) fraction, Fe and Cu was bound with organic matter (OM) and RES fractions and Na was associated with carbonate (CAR) fraction. The metal accumulation after 60 d of growth of the plant was found in the order of K>Na>Fe>Zn>Cr>Mn>Cu>Pb>Ni>Cd and its translocation was found less in upper part. The accumulation of toxic metals (Cr, Ni and Cd) in the plants was found to increase with increase in sludge ratio, in contrast, the accumulation of Pb decreased. In view of growth parameters and metal accumulation in the plant, it was observed that lower amendments (25%) of tannery sludge were found suitable for the phytoremediation of most of the studied metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号