首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Experiments were carried out to investigate the accumulation and elimination of cadmium (Cd) in tissues (gill, intestine, kidney, liver and muscle) of juvenile olive flounder, Paralichthys olivaceus, exposed to sub-chronic concentrations (0, 10, 50, 100 microg l(-1)) of Cd. Cd exposure resulted in an increased Cd accumulation in tissues of flounder with exposure periods and concentration, and Cd accumulation in gill and liver increased linearly with the exposure time. At 20 days of Cd exposure, the order of Cd accumulation in organs was gill > intestine > liver > kidney > muscle and after 30 days of exposure, those were intestine > gill > liver > kidney > muscle. An inverse relationship was observed between the accumulation factor (AF) and the exposure level, but AF showed an increase with exposure time. During the depuration periods, Cd concentration in the gill, intestine and liver decreased immediately following the end of the exposure periods. No significant difference was found Cd in concentration in the kidney and muscle during depuration periods. The order of Cd elimination rate in organs were decreased intestine > liver > gill during depuration periods.  相似文献   

2.
One of the major challenges in assessing the potential metal stress to aquatic organisms is explicitly predicting the internal dose in target organs. We aimed to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the fish alter the process of Cu uptake, depuration, and accumulation (toxicokinetics (TK)) under prolonged conditions. We measured the temporal Cu profiles in selected organs after single and combined exposure to waterborne and dietary Cu for 14 days. Quantitative relations between different sources and levels of Cu, duration of treatment, and organ-specific Cu concentrations were established using TK modeling approaches. We show that water was the main source of Cu in the gills (>94 %), liver (>89 %), and alimentary canal (>86 %); the major source of Cu in the muscle (>51 %) was food. Cu uptake and depuration in tilapia organs were mediated under prolonged exposure conditions. In general, the uptake rate, depuration rate, and net bioaccumulation ability in all selected organs decreased with increasing waterborne Cu levels and duration of exposure. Muscle played a key role in accounting for the rapid Cu accumulation in the first period after exposure. Conversely, the liver acted as a terminal Cu storage site when exposure was extended. The TK processes of Cu in tilapia were highly changed under higher exposure conditions. The commonly used bioaccumulation model might lead to overestimations of the internal metal concentration with the basic assumption of constant TK processes.  相似文献   

3.
Choi MC  Yu PK  Hsieh DP  Lam PK 《Chemosphere》2006,64(10):1642-1649
A local strain of the dinoflagellate Alexandrium tamarense (ATCI01), which predominantly produces C2 toxin, was fed to the clams (Ruditapes philippinarum) under laboratory conditions. Concentrations of paralytic shellfish toxins (PSTs) in the dosed clams were determined by High Performance Liquid Chromatographic (HPLC) analyses, and the clams were homogenized and then fed to the gastropods (Nassarius festivus). In the toxin accumulation phase, which lasted for 42 days, concentrations of PSTs increased in the snails gradually, reaching a maximum of 1.10 nmole g(-1) at the end of the exposure period. The toxin content of the homogenized clams (food) was 13.18 nmole g(-1), which was about 12-fold higher than the PST content in the snails. Between day 43 and day 82, the snails were fed with non-toxic clams, and this period represented the depuration phase. Accumulation and depuration rates of PSTs in the snails, N. festivus, were determined by fitting the experimental data to user-defined parameters program using a one-compartment model. Two different modeling approaches were used to derive the accumulation and depuration rates. The first approach is to derive both values from the data for the toxin uptake. The second approach is to derive depuration rate from the depuration data and then to derive uptake rate, allowing for toxin depuration, from the data for toxin uptake. The first approach yielded more consistent results for the toxin concentration at the end of the uptake period, when compared with the experimental data. The toxin uptake and depuration rates were 1.64 (pmole of toxin into snail per day) per (nmole g(-1) of toxin in food) and 0.06+/-0.02 day(-1) (mean+/-SE), respectively. The toxin profiles of snails were similar to the clams, but different from the algae. Besides C toxins (C1 and C2), dcGTX2 and dcGTX3 were also detected in both clams and snails. The beta:alpha epimer ratio gradually decreased during trophic transfer and approached a ratio of 1:3 (26.4 mol%:73.6 mol% at day 42) in the snails, near the end of the accumulation period.  相似文献   

4.
Groups of zebra mussels (Dreissena polymorpha) and asiatic clams (Corbicula fluminea) were exposed to cadmium and zinc with the aim of studying the effect of these metals on the 57Co, 110Ag and 134Cs uptake and depuration by these freshwater bivalves. In the presence of zinc, the 57Co concentration factor for the whole organism of the two species was halved, notably because of a decrease of the uptake parameter. Conversely, Zinc and the Cd + Zn mixture increased the 110mAg uptake process by clams and mussels. The two metals also increased the depuration of this radionuclide in mussels, whereas this phenomenon was only observed in clams exposed to cadmium. In comparison with 57Co and 110mAg, the 134Cs bioconcentration was 5-10 times lower in D. polymorpha and not detected in C. fluminea. This weak contamination by this radionuclide resulted from a lower uptake and a higher depuration parameters.  相似文献   

5.
The environmentally persistent perfluorooctane sulfonate (PFOS) is a perfluoroalkylated acid (PFA), which has been found to accumulate and biomagnify through food webs all over the world. In the present investigation, the accumulation kinetics of PFOS was explored using the bioaccumulation model OMEGA. As accumulation behavior of PFOS may show similarities to fatty acids as well as to neutral organic compounds, different modeling approaches were used. Accumulation kinetics of PFOS was modeled similar to (1) moderately and (2) highly hydrophobic compounds, (3) metals and (4) as a combination of hydrophobic compounds and metals. Modeled elimination and uptake rate constants were compared to empirical rate constants from literature. Subsequently, model predictions were compared to field-based biota-suspended solids accumulation ratios (BSAF) in the estuarine food chain of the Western Scheldt, The Netherlands. Results show that uptake of PFOS is comparable to moderately hydrophobic compounds and elimination is best described by elimination kinetics of metals. These observations indicate that the accumulation behavior of PFOS is comparable to that of short and medium chained fatty acids.  相似文献   

6.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

7.
A kinetic approach was employed to determine the rates of metal uptake (Cd, Cr and Zn) from the dissolved phase and the rate constants of metal depuration in the mussel Perna viridis and the clam Ruditapes philippinarum. The effects of ambient metal concentration, salinity, and body size on the metal influx rate were examined. A linear positive relationship was observed between the metal influx rate and the metal concentration in ambient seawater. There was some evidence that Zn uptake was regulated by the bivalves in response to an increase in ambient Zn concentration. The uptake rate constant was highest for Zn and lowest for Cr in both bivalves, and was higher in mussels than in clams. The metal influx rate decreased by 1.6-1.8 times for the three metals when the salinity was increased from 15 ppt to 30 ppt. However, the effect of salinity on Zn influx in mussels was not statistically significant. A negative relationship of Cd and Zn influx rates with tissue dry weight was also found in both bivalves. Cr uptake in mussels was not significantly correlated with body size, but its uptake in clams was significantly correlated with body size. Metal concentration in ambient seawater appeared to be the most determining factor on metal uptake from the dissolved phase in both bivalves. The efflux rate constants of the three metals were within the range of 0.01-0.03 d-1, and were comparable between the mussels and the clams. Using a simple bioenergetic-based kinetic model, it was shown that both dissolved uptake and food ingestion can contribute to metal accumulation in the bivalves. However, Zn accumulation in the clam R. philippinarum was dominated by uptake from food ingestion. Metal partitioning in ingested food was found to be critical in affecting the relative importance of metal uptake from the dissolved phase and food source, primarily because of the large variability of this parameter in natural environments.  相似文献   

8.
Field results have shown that Mytilus californianus is able to release its Cd concentrations significantly in just a few days. The existing paradigm states that Cd elimination from Mytilus soft tissues is a very slow process. This discrepancy was investigated in the laboratory, testing the effect of two Cd levels (10 and 1 microgram l-1) on its release from Mytilus trossulus and M. californianus soft tissues. After exposure to 10 micrograms l-1, both species showed a significant uptake with no elimination after several days of depuration. After exposure to 1 microgram l-1, the responses were different. No significant Cd uptake was seen in M. trossulus while in M. californianus uptake was significant but returned to the background level after just 1 day of depuration. This response of M. californianus is consistent with that reported from field studies. These results are important for environmental monitoring programs since M. californianus has been used as equivalent to other Mytilus species in the assessment of Cd pollution.  相似文献   

9.
Separate 77-d fish feeding studies were conducted on the cyclic volatile methylsiloxane (cVMS) chemicals octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout, Oncorhynchus mykiss, with the determination of biomagnification factor (BMF) and lipid-adjusted BMF (BMF(L)) values as the final experimental metrics. The studies used fish food concentrations of ∼500 μg g−1 for exposure periods of 35 d, followed by a depuration period of 42 d with clean food. The fish tissue concentrations of D4 and D5 achieved empirical steady-state by day 21 in each study. By day 7 of exposure, total 14C activity of both compounds had moved from the fish gastrointestinal (GI) tract into surrounding tissue. An absence of significant fish growth during the initial depuration phase allowed for measurement of empirical depuration rate constants (k2) independent of growth dilution for D4 and D5 of 0.035 and 0.040 d−1, respectively, corresponding to elimination half-lives of approximately 20 d. These rate constants indicated that ∼70–75% of steady-state was achieved during exposure in both studies, resulting in empirical steady-state BMF and BMF(L) values of 0.28 and 0.66 for D4, respectively, and 0.32 and 0.85 for D5, respectively. Kinetic modeling using simple first-order uptake and depuration dynamics produced good agreement with experimental data, with D4 and D5 assimilation efficiencies of 40% and 44%, respectively. Growth-corrected depuration rate constants modeled over the entire study data set indicated slower elimination kinetics for D4 (k2 of 0.007 d−1 or half-life of 100 d) compared to D5 (k2 of 0.010 d−1 or elimination half-life of 69 d). Kinetic BMFk values (i.e., k1/k2) for D4 and D5 were 1.7 and 1.3, respectively, with lipid-adjusted BMFk(L) values of 4.0 and 3.4, respectively.  相似文献   

10.
The selective serotonin reuptake inhibitor (SSRI) class of anti-depressants is among the most widely prescribed groups of pharmaceuticals. Consequently, aquatic ecosystems impacted by municipal wastewater discharges are predicted to receive substantial annual loadings of these compounds. Although SSRIs have been detected in fish tissues, little is known of their uptake and depuration in freshwater fish species. In this study, Japanese medaka (Oryzias latipes) were exposed to fluoxetine at a nominal concentration of 0.64 microg L(-1) for 7d and subsequently allowed to depurate in clean water over a 21d period. Fluoxetine uptake by medaka was observed within the first 5h of exposure and the biologically active metabolite, norfluoxetine, was also detected in medaka tissues during this timeframe. A maximum fluoxetine concentration was measured in medaka by the third day of the uptake phase, yielding an uptake rate constant (k(1)) of 5.9+/-0.5 (d(-1)). During the depuration phase of the experiment, a half life of 9.4+/-1.1d was determined for fluoxetine. Using these data, bioconcentration factor (BCF) values of 74 and 80 were estimated for fluoxetine and a pseudo-BCF (the ratio of the concentration of norfluoxetine in medaka and the aqueous fluoxetine concentration) of 117 was calculated for norfluoxetine. These results indicate longer persistence and greater potential for the bioaccumulation of fluoxetine and norfluoxetine in fish tissues than would be predicted from prior half life estimates derived using mammalian species.  相似文献   

11.
Bioaccumulation and elimination of 14C-lindane in Enchytraeus albidus was studied in artificial OECD soil and a silty loam from an agricultural field in Central West Portugal. Results showed that enchytraeids were able to bioaccumulate the chemical with a kinetic pattern similar to that of earthworms: fast uptake within a few days and a biphasic elimination pattern. A 10 day period to study uptake was sufficient, but a few more days were probably necessary for elimination. Bioaccumulation was influenced by soil type. The authors suggest that higher organic matter (OM) content and also the higher content on sand particles in the OECD soil may have led to a faster elimination: hydrophobic chemicals tend to adsorb to OM being in this way less bioavailable and therefore less bioaccumulated having bioaccumulation factor value around 6 while in natural soil is 10; the sand could act as abrasive particles (helpers) in the elimination process leading to an elimination of 90% of the chemical in two days while in natural soil 67% was eliminated in the same period of time.  相似文献   

12.
In toxicokinetics studies, interactions between chemicals in mixtures has been largely neglected. This study examines a mixture of perchlorate and arsenate because (1) they have the potential to co-occur in contaminated aquatic habitats, and (2) a previous study by the authors found possible toxicological interactive effects. In the present study, zebrafish (Danio rerio) were exposed to two concentrations of sodium perchlorate (10 and 100 mg l(-1)), sodium arsenate (1 and 10 mg l(-1)), and the mixture-sodium perchlorate+sodium arsenate (10+1 mg l(-1) and 100+10 mg l(-1) Na(2)HAsO(4)-high mixture) for 90 d. Their uptake and accumulation by zebrafish was evaluated at 10, 30, 60, and 90 d. In addition, depuration was examined at 1, 3, and 5d after cessation of the exposure. The uptake of either chemical was concentration-dependent, with significantly higher uptake at high concentrations at either exposure interval. In contrast, there was no significant difference in whole body residue between single chemicals and the corresponding mixture except for 100 mg l(-1) sodium arsenate at 90 d. However, there was increasing accumulation over time at the high concentration of either chemical alone and their mixture, and this increasing trend was more pronounced in the single chemical exposures than in the mixture. At the concentrations tested in the current study, both chemicals reduced the uptake but enhanced the depuration of the other chemical from the zebrafish. This study represents the first examination of the interaction of two anions-perchlorate and arsenate with respect to toxicokinetics.  相似文献   

13.
Ni IH  Chan SM  Wang WX 《Chemosphere》2005,61(11):1607-1617
The biokinetics (aqueous uptake, dietary assimilation, and elimination) of Cd, Se, and Zn in the intertidal mudskipper, Periophthalmus cantonensis, were examined at different acclimated salinities using the radiotracer technique. The dietary assimilation efficiency from ingested radiolabeled polychaetes was the highest for Se (32–40%), followed by Zn (5–7%) and Cd (2–3%), and was not influenced by salinity within a range of 10–30 psu. Uptake from the dissolved phase typically exhibited a linear pattern within the first 12 h of exposure, followed by a second slower uptake. The highest concentration factor (CF) was found for Zn, followed by Cd and Se. Differences in salinity did not significantly affect the CF of the three metals within the first 12 h, but the CFs were significantly higher at lower salinities (10–20 psu) than at the highest salinity (30 psu) by the end of 48 h exposure. Because the degrees to which the uptake of Se (a metalloid) and Cd/Zn were affected by salinity were comparable, we concluded that metal speciation as a result of salinity change was not important in leading to a change in metal CF. Physiological changes may be responsible for the increasing uptake at lowered salinity. The elimination rates of the three metals (0.01–0.06 d−1) were not significantly affected by salinity, but Se was eliminated at a faster rate following aqueous uptake than following dietary ingestion. There was no consistent influence of exposure routes on Cd and Zn elimination. The accumulated Cd was mainly associated with the gut, whereas the muscle was the dominant target site for Se and Zn accumulation.  相似文献   

14.
Despite the great concerns about dioxins in the marine environments, the biokinetics and bioaccumulation of these compounds in marine organisms remains little known. Using radioactive tracers the aqueous uptake, dietary assimilation efficiency, and elimination of dioxins were measured in marine phytoplankton, copepods and seabream. The calculated uptake rate constant of dioxins decreased with increasing trophic levels, whereas the dietary assimilation efficiency (AE) was 28.5-57.6% in the copepods and 36.6-70.2% in the fish. The dietary AE was highly dependent on the food concentrations and food type. The elimination rate constant of dioxin in the copepods varied with different exposure pathways as well as food concentration and food type. Biokinetic calculation showed that dietary accumulation was the predominant pathway for dioxin accumulation in marine copepods and fish. Aqueous uptake can be an important pathway only when the bioconcentration of dioxins in the phytoplankton was low.  相似文献   

15.
Accumulation and elimination of aqueous and dietary silver in Daphnia magna   总被引:1,自引:0,他引:1  
Lam IK  Wang WX 《Chemosphere》2006,64(1):26-35
The dissolved uptake, dietary assimilation, and efflux of Ag in a freshwater cladoceran, Daphnia magna, were measured under different laboratory conditions. The dissolved uptake rate of Ag was proportional to the ambient Ag concentration, but the accumulation was highly variable due to the sorption of Ag onto the daphnid bodies. The ambient Na(+) but not the ambient K(+) concentration significantly decreased the dissolved uptake of Ag, suggesting a competitive uptake of Ag(+) with Na(+). The dietary assimilation efficiencies (AEs) of Ag are dependent on the concentration of the algal food available to D. magna. The AE was as low as 2% when the food concentration reached the saturation levels. In contrast, the Ag concentrations in the algae did not significantly affect the Ag AE in D. magna. The efflux rate constant of diet-incorporated Ag was twice that through dissolved uptake. The elimination of Ag was further separated into different compartments (excretion, egestion, molting, and reproduction) in the juveniles and adults after accumulation from dissolved and dietary sources. Regeneration into the dissolved phase was the predominant pathway by which the incorporated Ag was lost from D. magna, regardless of the exposure pathway. In contrast to the essential metals or Hg, there was minimal maternal transfer of Ag from the mothers to the offspring. By employing the biokinetic model, we further showed that water is a dominant pathway for Ag accumulation in D. magna. Trophic transfer is less significant primarily because of the low Ag AE when the food concentration reached the saturation levels.  相似文献   

16.
Experiments were conducted to determine the kinetics and relative importance of aqueous and dietary uptake of cadmium by the freshwater isopod Asellus aquaticus (L.). Test animals were exposed during 30 days to aqueous Cd in a continuous flow system (exposure levels: 0.2 - 10 microg litre(-1)) and kept on a diet of previously contaminated Elodea sp. (range of Cd concentrations: 2-350 microg g(-1), dry weight). Preceding semi-static experiments on dosage-control of the dietary factor revealed a rapid uptake of Cd by Elodea, with relatively high concentration factors (CF), which ranged from 4.8 to 5.5 (dry weight log (CF) after 16 days). For Asellus uptake from water appeared to be the predominant route. Highly significant bioconcentration of cadmium from water was observed in the animals, even at exposure levels below 1.0 microg litre(-1). In the various treatments, direct uptake from water accounted for 50-98% of the body burdens after 30 days exposure. The experimental results were described with a first order one-compartment bioaccumulation model. Model parameter estimates (mean +/- standard error) were obtained for rate constant of uptake (560 +/- 110 day(-1)), rate constant of elimination (0.032 +/- 0.017 day(-1)) and assimilation efficiency of Cd uptake from food (1.1 +/- 0.7%). The (dry weight) bioconcentration factor (BCF) and bioaccumulation factor (BAF) for extrapolated steady state conditions were estimated at 18 000 (BCF) and 0.08 (BAF). Experiments conducted at two different pH levels (5.9 versus 7.6) revealed no significant effects of pH on the uptake of aqueous Cd by the isopods. The results are discussed in relation to their potential significance to the field situation.  相似文献   

17.
We studied the bioaccumulation of lead in selected tissues of Prussian carp Carassius gibelio (Bloch, 1782) during 12 and 24 months exposure to different doses of this metal in feed and the elimination of lead from tissues during the following 12-month depuration period. Lead concentration was determined using atomic absorption spectrometry method. The highest lead concentrations were observed at 2.0?±?0.54 to 7.4?±?1.1 mg?kg?1 in the kidney, 3.0?±?0.13 to 5.2?±?0.17 mg?kg?1 in the bone, and 4.5 (±0.4)?mg?kg?1 in the hepatopancreas of fish from groups exposed to lead dietary concentration from 8 to 49 mg?kg?1 for 24 months. The rate of accumulation were generally the highest at the beginning of exposure as evidenced by the highest monthly increments of bioaccumulation observed after 3 months of contamination for muscles, hepatopancreatic gland, intestine, and gills. Also analysis of the monthly increments of lead bioaccumulation in bone tissue and the highly significant coefficients of correlation indicate that the dynamics of accumulation are clearly dependent on dose of exposure. Depuration of accumulated lead from the organs depended mainly on tissue and duration of elimination period. Very rapid depuration was observed in soft tissues such as the intestine or muscles. Very low elimination was observed for scales and bones where until the end of the experiment highly significant lead concentration differences were observed in all groups in relation to the control group. Chronic dietary exposure in the range of 8–49 mg Pb?kg?1 resulted in no significant effects on the growth and survival of Prussian carp females.  相似文献   

18.
M. Bouraly  R.J. Millischer 《Chemosphere》1989,18(9-10):2051-2063
A comparative study has been made of the bioaccumulation and elimination by fish and the rat of (i) tetrachlorobenzyltoluene (TCBT), a substance recently proposed as a substitute for polychlorobiphenyl (PCB), and (ii) DP5, a pentachlorobiphenyl mixture (PCB-5 C1).

The study relating to fish (Brachydanio Rerio) comprised a 30-day accumulation period followed by a 30-day elimination period. Nominal concentrations of TCBT and PCB-5 C1, respectively, in the water, were 1mg/litre in both cases.

The study relating to the rat comprised a 90-day treatment period followed by a 30-day elimination period. The animals were exposed by oral (gavage) to doses of 0, 5, 30, and 200 mg/kg/day in the case of TCBT and to the single dose of 5 mg/kg/day in the case of PCB-5 Cl.

Concentrations of TCBT and PCB-5 Cl in rat liver and fats, in whole body tissues of fish and in water were measured by gas chromatography, using an electron capture detector.

Results showed a clear difference between TCBT and PCB-5 Cl: in fish, bioaccumulation of TCBT was relatively slight and the 50% depuration time was approximately 26 days; in rat liver and fats, TCBT was also only weakly accumulated and rapidly eliminated. This contrasted sharply with the findings for PCB-5 Cl, viz: high accumulation potential and slow elimination.

Observed rates of bioaccumulation and elimination of TCBT and PCB-5 Cl by the rat were in good agreement with the toxicological findings for the same species.  相似文献   


19.
Uptake, absorption efficiency and elimination of DDT were measured in marine phytoplankton, copepods (Acartia erythraea) and fish (mangrove snappers Lutjanus argentimaculatus). The uptake rate constant of DDT from water decreased with increasing trophic level. The dietary absorption efficiency (AE) of DDT was 10-29% in copepods and 72-99% in fish. Food concentration did not significantly affect the AEs of DDT, but the AEs varied considerably among the different food diets. The elimination rate constants of DDT by the copepods were comparable following uptake from the diet and from the water. Elimination of DDT from the fish was exceedingly low. Both aqueous and dietary uptake are equally important for DDT accumulation in the copepods. In fish, dissolved exposure is a more significant route than intake from the diet. The predicted trophic transfer factors in the copepods and the fish are consistent with the field measurements in marine zooplankton and fish.  相似文献   

20.
The uptake of Cd, Se(IV) and Zn by the freshwater alga Scenedesmus obliquus and the subsequent transfer and release budget in Daphnia magna were investigated under different nutrient additions and cell incubation conditions. An increase in ambient phosphate concentrations from 0.5 micromol l(-1) to 50 micromol l(-1) significantly increased the intracellular accumulation of Cd (by 18x) and Zn (by 5x), but decreased the accumulation of Se (by 126x) in the alga. The percentage of these metals distributing in the intracellular pool of algae also increased substantially with increasing ambient P concentrations. Nitrate addition from 5.0 to 200 micromol l(-1) did not influence the uptake of any of the three metals, although a significant decrease in the intracellular Se distribution was observed. Radiolabeled algae under different nutrient manipulations (semi-continuous culture, starvation, and P-pulse treatments) were used to measure trophic transfer assimilation efficiency (AE) in Daphnia. When the algal cells were grown in a semi-continuous culture, starved for N and P, or were treated with P-pulse, the AEs of Cd and Zn were generally independent of the nutritional conditions, but the Se AE was significantly affected by different P levels. The efflux rate constants, determined during 10 d depuration following 7 days of dietary uptake, decreased significantly for Cd and Zn, but were relatively constant for Se with increasing P concentration. N-addition caused no effect on the metal efflux rate constants. P- or N-additions did not influence the release budget (including molting, neonates, excretion and feces) for all three elements in Daphnia. Our study indicated that phosphate enrichment may substantially increase metal uptake in green alga S. obliquus. Responses of trophic transfer in Daphnia to nutrient enrichment were metal specific. P-enrichment can possibly lead to considerable decrease on Se transfer from algae to zooplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号