首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Produced water samples from the Bacia de Campos oil field offshore Pargo andPampo platforms were analyzed for Ba, 226Ra, 228Ra, V, Ni and Pb. The activity concentrations measured were in the range of 1.6–6.0 Bq/L for 226Ra and 0.7–8.2 Bq/L for 228Ra for both platforms. For Ba, V, Ni and Pb the concentrations measured were in the range of 5.6–25.7 mg/L, 0.15–0.46 μg/L, 4.85–12.14 μg/L and 4.04–12.37 μg/L. A strong correlation between barium and radium isotopes concentration was observed (226Ra: R2 = 0.897;228 Ra: R2 = 0.737). In order to evaluate the environmental impact from discharges of produced water into the sea, the seawater and sediment samples were collected at distances from 250 to 1000 m around the platforms. The seawater samples were analyzed for dissolved and particulate material and the sediment samples for total and leachable fraction. The results show that even for the shortest sampling distance (250 m) from the discharge point, Ba, 226Ra, 228Ra, V, Ni and Pb concentrations in seawater and sediment were similar to the local background, indicating that dispersion by local currents minimizes any environmental impact involving these parameters.  相似文献   

2.
The perchlorate anion (ClO 4 m ) is produced when the solid salts of ammonium, potassium, and sodium perchlorate, and perchloric acid dissolve in water. Ammonium perchlorate, used in solid rocket engine fuels, has a limited shelf life and must periodically be replaced. Before 1997, perchlorate could not be readily detected in groundwater at concentrations below 100 µg/L, until the California Department of Health Services developed an acceptable analytical method that lowered the detection limit to 4 µg/L. Subsequently, groundwater containing perchlorate were soon encountered in several western states, and contamination became apparent in Colorado River water. Most perchlorate salts have high water solubilities; concentrated solutions have densities greater than water. Once dissolved, perchlorate is extremely mobile, requiring decades to degrade. Health effects from ingesting low dosage perchlorate-contaminated water are not well known: it interferes with the body's iodine intake, causing an inhibition of human thyroid production. Contaminated surface and groundwater treatment may require bio- and/or phytoremediation technologies. Perchlorate in groundwater is relatively unretarded; it probably travels by advection. Therefore, it may be used as a tracer for hydrocarbon and metal contaminants that are significantly more retarded. Possible forensic techniques include chlorine isotopes for defining multiple or commingled perchlorate plumes.  相似文献   

3.
Major ion concentrations and Sr isotope ratios (87Sr/86Sr) were measured in rainwater samples collected at an urban site in Beijing over a period of one year. The pH value and major ion concentrations of samples varied considerably, and about 50% of the rainwater studied here were acidic rain with pH values less than 5.0. Ca2+ and NH4+ were the dominant cations in rainwaters and their volume weighted mean (VWM) values were 608 μeq l?1 (14–1781 μeq l?1) and 186 μeq l?1 (48–672 μeq l?1), respectively. SO42? was the predominant anion with VWM value of 316 μeq l?1 (65–987 μeq l?1), next was NO3? with VWM value of 109 μeq l?1 (30–382 μeq l?1).Using Na as an indicator of marine origin, and Al for the terrestrial inputs, the proportions of sea salt and terrestrial elements were estimated from elemental ratios. More than 99% of Ca2+ and 98% of SO42? in rainwater samples are non-sea-salt origin. The 87Sr/86Sr ratios were used to characterize the different sources based on the data sets of this study and those from literatures. Such sources include sea salts (87Sr/86Sr~0.90917), soluble soil dust minerals originating from either local or the desert and loess areas (~0.7111), and anthropogenic sources (fertilizers, coal combustion and automobile exhausts). The high concentrations of alkaline ions (mainly Ca2+) in Beijing atmosphere have played an important role to neutralize the acidity of rainwater. However, it is worth noting that there is a remarkable acidification trend of rainwater in Beijing recent years.  相似文献   

4.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

5.
Seawater, atmospheric dimethylsulfide (DMS) and aerosol compounds, potentially linked with DMS oxidation, such as methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42?) were determined in the North Yellow Sea, China during July–August, 2006. The concentrations of seawater and atmospheric DMS ranged from 2.01 to 11.79 nmol l?1 and from 1.68 to 8.26 nmol m?3, with average values of 6.20 nmol l?1 and 5.01 nmol m?3, respectively. Owing to the appreciable concentration gradient, DMS accumulated in the surface water was transferred into the atmosphere, leading to a net sea-to-air flux of 6.87 μmol m?2 d?1 during summer. In the surface seawater, high DMS values corresponded well with the concurrent increases in chlorophyll a levels and a significant correlation was observed between integrated DMS and chlorophyll a concentrations. In addition, the concentrations of MSA and nss-SO42? measured in the aerosol samples ranged from 0.012 to 0.079 μg m?3 and from 3.82 to 11.72 μg m?3, with average values of 0.039 and 7.40 μg m?3, respectively. Based on the observed MSA, nss-SO42? and their ratio, the relative biogenic sulfur contribution was estimated to range from 1.2% to 11.5%, implying the major contribution of anthropogenic source to sulfur budget in the study area.  相似文献   

6.
Amounts of polycyclic aromatic hydrocarbons (PAHs) and oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in samples collected from the air, from the dust on a guardrail, and from the soils on a tunnel roadway at five sampling sites in a regular roadway tunnel were chemically analyzed in order to determine their sources. Among the 23 PAHs found in the air samples, pyrene was found in the highest concentration (43±7.2 ng/m3), followed by fluoranthene (26±4.3 ng/m3). Among 20 oxy-PAHs found in the air samples, anthraquinone was found in the greatest amount (56±3.9 ng/m3). The average concentration of the major PAHs found in the guardrail dust samples were 6.9±0.77 μg/g for pyrene, 5.5±0.76 μg/g for fluoranthene, and 2.6±0.30 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the guardrail dust samples were 9.2±3.5 μg/g for anthraquinone and 1.4±0.50 μg/g for 2-methylanthraquinone. The average concentration of the major PAHs found in the soil samples were 1.1±0.31 μg/g for fluoranthene, 0.92±0.21 μg/g for pyrene, and 0.72±0.16 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the soil samples were 1.2±0.88 μg/g for anthraquinone, 0.18±0.04 μg/g for 4-biphenylcarboxaldehyde, and 0.13±0.08 μg/g for 2-methylanthraquinone. The BeP ratios calculated from the results suggest that most PAHs found in the samples collected from the roadway tunnel were from automobile exhaust gases.  相似文献   

7.
Outdoor, indoor and personal PM2.5 measurements were made in a population of nonsmoking adults from three communities in the Minneapolis–St. Paul metropolitan area between April and November 1999. Thirty-two healthy adult subjects (23 females, 9 males; mean age 42±10, range: 24–64 yr) were monitored for 2–15 days during the spring, summer, and fall monitoring seasons. Twenty-four hour average gravimetric PM2.5 samples were collected using a federal reference monitor (Anderson RAAS2.5-300) located at outdoor (O) central sites in the Battle Creek (BCK), East St. Paul (ESP) and Phillips (PHI) communities. Concurrent 24-h average indoor (I) and personal (P), and a limited number of outdoor-at-home (O@H) samples were collected using inertial impactors (PEM™ Model 200, MSP, Inc). The O (geometric mean {GM}=8.6; n=271; range: 1.0–41 μg/m3) were lower than I concentrations (GM=10.7; n=294; range 1.3–131 μg/m3), which were lower than P concentrations (GM=19.0; n=332; range 2.2–298 μg/m3). Correlation coefficients between O concentrations in the three communities were high and measured GM O levels in BCK were significantly lower than ESP, most likely because of local sources, but GM concentrations in PHI were not significantly different from BCK or ESP. On days with paired samples (n=29), O concentrations were significantly lower (mean difference 2.9 μg/m3; p=0.026) than O@H measurements (GM=11.3; range: 3.5–33.8 μg/m3), likely due to local sources in communities. Observed I and P concentrations were more variable, probably because of residential central air conditioning and hours of household ventilation for I and P, and occupational and environmental tobacco smoke exposures outside the residence for P. Across all individuals and days the median PM2.5 “personal cloud” was 5.7 μg/m3, but the mean of the average for each participant was 15.7 μg/m3, with very low values in participants who did not work outside the home and much higher values in subjects with active lifestyles. Across all households and individuals the correlation between P and O concentrations was not significant, but the overall I–O correlation (0.27) and P–I correlation (0.51) were significant (p<0.05). Relatively little spatial variability was observed in O PM2.5 concentrations across the three communities compared to the variability associated with I and P samples, and the measured O levels were relatively low compared to other large metropolitan areas in the United States.  相似文献   

8.
About 60 rainwater samples were collected at west Los Angeles, California in 1981–1984 and were analyzed for C1–C9 monocarboxylic acids (0.33–79 μM, average (av.) 13±15 μM), C2–C10 dicarboxylic acids (2.9–51 μM, av. 7.5±14 μM) and C1–C4 aldehydes (0.85–28 μM, av. 9.2±11 μM). Distributions of monocarboxylic acids show a predominance of formic (average concentration: 6.5 μM) and acetic (av. 5.6 μM) acids followed by propionic acid (av. 0.44 μM). Oxalic acid is the dominant diacid (av. 3.9 μM) followed by succinic acid (av. 1.0 μM). Formaldehyde (av. 6.9 μM) is the dominant aldehyde, with the next most abundant, acetaldehyde, being minor (av. 0.65 μM). For select rain samples described in this paper, were found to comprise monocarboxylic acids 0.9–12.3% (av. 4.4±3.4%), diacids comprise 1.2–9.5% (av. 4.2±3.3%) and aldehydes comprise 0.2–6.2% (av. 2.1±2.2%) of total organic carbon (TOC, 2.0–18.6 mg C l−1; av. 9.8±5.4 mg C l−1). Annual rain fluxes of monocarboxylic acids and aldehydes during 1982–1983 were calculated to be 0.24 and 0.11 g m−2 yr−1, respectively, with an annual estimated wet deposition in the Los Angeles Basin of 3120 and 1430 tons, respectively. These fluxes are equivalent to 2500 times of the acids and 2.5 times of the aldehydes emitted from automobile exhausts in the Los Angeles air basin. This comparison suggests that major portions of the carboxylic acids detected in the rain are not directly emitted from auto-exhausts, but are most likely produced in the atmosphere by gaseous and/or aqueous phase photo-induced reactions.  相似文献   

9.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

10.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

11.
《Chemosphere》2013,90(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86–1563 ng L−1), while quinolones were prominent in sediments (65.5–1166 μg kg−1) and aquatic plants (8.37–6532 μg kg−1). Quinolones (17.8–167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

12.
Dissolved organic carbon (DOC), surface active substances (SAS) and copper complexing capacity (CuCC) were studied in bulk precipitations collected periodically from 2003 to 2007 in the continental city of Croatia (Zagreb: n = 27) and in the city at the Adriatic coast (?ibenik: n = 38). DOC concentrations (Zagreb: 0.67–4.03 mgC/L with average concentration of 1.93 ± 0.76 mgC/L; ?ibenik: 0.44–4.13 mgC/L with average concentration of 1.83 ± 0.83 mgC/L) are similar to those measured in other samples of continental rainwater in the northern hemisphere. The concentrations of SAS in samples from Zagreb ranged from 0.055 to 0.45 eq. Triton-X-100 mg/L with average concentration of (0.14 ± 0.06) eq. Triton-X-100 mg/L. SAS fractions were of a similar range in ?ibenik (0.02–0.60 eq. Triton-X-100 mg/L) with an average concentration of 0.11 ± 0.06 eq. Triton-X-100 mg/L. However, the lowest values of SAS (between 0.02 and 0.04 eq. Triton-X-100 mg/L) were observed only in ?ibenik (27%). We have estimated that the higher pH values were responsible for lower surface activity of organic matter in bulk samples from ?ibenik. DOC may form complexes that control the transport and solubility of heavy metals in natural water. CuCC measured in ?ibenik in the range 0.066–1.4 μM Cu2+ was in general higher, compared to the one in Zagreb (0.010–0.586 μM Cu2+) which is the result of biogenically driven organic contribution to the precipitation, especially in the warmer period of the year.  相似文献   

13.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

14.
This paper evaluates the role of Saharan dust advection in the exceeding of the PM10 thresholds in the city of Rome, Italy. To this purpose, a series of observations and model forecasts recorded in the year 2001 are analysed and discussed. Lidar profiles collected over 168 days of the year are employed to both assess the presence and magnitude of Saharan dust layers over the city and to evaluate the depth of the planetary boundary layer. Backtrajectories are used to verify the Saharan origin of the lidar-sounded air masses. Model predictions of the presence of Saharan dust over the area are employed to fill the time gaps between lidar observations. PM10 and carbon monoxide records of both a city background (Villa Ada) and a heavy traffic station (Magna Grecia) are cross-analysed with the dust events record and meteorological data. The analysis shows that: (1) Saharan dust was advected over Rome on about 30% of the days of 2001; (2) mean contribution of Saharan dust transport events to daily PM10 levels was of the order of 20 μg m−3; (3) at the urban background station of Villa Ada, the Saharan contribution caused the surpassing of the maximum number of days in excess of 50 μg m−3 fixed by the current legislation (35 per year). Conversely, at the heavy traffic station of Magna Grecia the Saharan contribution was not determinant at causing the observed large exceeding of that limit, as well as of the maximum yearly average of 40 μg m−3; (4) 25% of the Saharan advection days (of the order of 100/year at Rome) led to a PM10 increase >30 μg m−3, 4% caused an increase >50 μg m−3, thus leading on their own to surpassing the 50 μg m−3 daily limit.  相似文献   

15.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

16.
The concentrations of polychlorinated biphenyls (PCBs) were assessed at four sites in Khour-e-Mousa (Mah-Shahr), Iran. Sea water, sediment and fish (cynoglossus bilineatus) samples were taken at each site and were analysed for PCB levels. To investigate the possible source of PCBs found in fish samples, sediments and waters were collected from four sites (D1, D2, D3, and D4) and studied. The relationship between PCB concentrations in sediment, water and fish is discussed. The results indicate that PCBs are detected in all fish samples and its concentration range from 3.2 to 102.7 μg kg?1 dry weight and 5.4–149.7 μg kg?1 dry weight in cold and warm seasons, respectively. The D2 and D4 sites were found to have the highest and lowest levels of PCB concentrations, respectively. Total congener PCB (CB, 28, 52, 44, 101, 149, 118, 153, 138, and 180) concentrations at the sediment samples for D1, D2, D3, and D4 sites ranged from 1.6 to 30.9 μg kg?1 dry weight and 2.3–47.1 μg kg?1 dry weight in cold and warm seasons, respectively. The total PCB concentrations for D2 site were found to be significantly higher than other three sites. Total water congener PCB (CB, 28, 52, 44, 101, 149, 118, 153, 138, and 180) concentrations ranged from 0.01 to 0.25 μg L?1 and 0.02–0.39 μg L?1 in cold and warm seasons, respectively.  相似文献   

17.
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200–350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm−3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t−1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41–3700 μg ITEQ t−1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91–414 μg kg−1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018–0.5 μg Nm−3) were below the Italian limit of 10 μg Nm−3.  相似文献   

18.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

19.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

20.
Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO2 ranging from 0.5 to above 40 μg S m−3. The main components in the airborne particles are (NH4)2SO4 and CaSO4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l−1 at the most rural site (LGS) to about 200 μeq l−1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l−1, while the total nitrogen concentration is between 30 and 150 μeq l−1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号