首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang S  Zhang S  Huang H  Lu A  Ping H 《Chemosphere》2012,89(11):1295-1301
A hydroponic experiment was conducted to investigate the debrominated, hydroxylated and methoxylated metabolism of polybrominated diphenyl ethers (PBDEs, BDE-15, -28 and -47) in maize. A total of six debrominated metabolites (de-PBDEs), seven hydroxylated PBDEs (OH-PBDEs, including two unidentified OH-di-PBDEs and one unidentified OH-tri-PBDE) and four methoxylated PBDEs (MeO-PBDEs) were determined in the exposed plants. The metabolic products were detected in maize only after 12 h of exposure to the PBDEs. However, the concentration of each type of the metabolites (de-PBDEs, OH-PBDEs or MeO-PBDEs) decreased at the later exposure time, possibly due to further metabolism. The removal of a bromine atom or the introduction of a hydroxyl/methoxy group was easier at the ortho-positions on the biphenyl structure than at the para-positions. Concentration ratios of the total debrominated, hydroxylated or methoxylated metabolites to the parent congener (BDE-28 or -47) generally followed the order of leaves > stems ? roots, and MeO-PBDEs > de-PBDEs ? OH-PBDEs. These results suggest that metabolism occurred preferentially in leaves and stems than in roots. Less transformation and shorter elimination half-life of OH-PBDEs would contribute to the lower concentrations of OH-PBDEs than of de-PBDEs or MeO-PBDEs in maize.  相似文献   

2.
《Chemosphere》2013,90(11):1295-1301
A hydroponic experiment was conducted to investigate the debrominated, hydroxylated and methoxylated metabolism of polybrominated diphenyl ethers (PBDEs, BDE-15, -28 and -47) in maize. A total of six debrominated metabolites (de-PBDEs), seven hydroxylated PBDEs (OH-PBDEs, including two unidentified OH-di-PBDEs and one unidentified OH-tri-PBDE) and four methoxylated PBDEs (MeO-PBDEs) were determined in the exposed plants. The metabolic products were detected in maize only after 12 h of exposure to the PBDEs. However, the concentration of each type of the metabolites (de-PBDEs, OH-PBDEs or MeO-PBDEs) decreased at the later exposure time, possibly due to further metabolism. The removal of a bromine atom or the introduction of a hydroxyl/methoxy group was easier at the ortho-positions on the biphenyl structure than at the para-positions. Concentration ratios of the total debrominated, hydroxylated or methoxylated metabolites to the parent congener (BDE-28 or -47) generally followed the order of leaves > stems  roots, and MeO-PBDEs > de-PBDEs  OH-PBDEs. These results suggest that metabolism occurred preferentially in leaves and stems than in roots. Less transformation and shorter elimination half-life of OH-PBDEs would contribute to the lower concentrations of OH-PBDEs than of de-PBDEs or MeO-PBDEs in maize.  相似文献   

3.
We determined the residue levels and patterns of hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and related compounds, such as PBDEs, methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in the blood of eleven cetacean species stranded along the Japanese coasts. The dominant OH- and MeO-PBDE isomers found in all cetaceans were 6OH-BDE47 and 6MeO-BDE47. Additionally, 2,4,6-triBPh was dominant isomer in all cetaceans. In contrast, specific differences in the distribution of para- and meta- OH-PBDE isomers and some BPhs (potential PBDEs metabolites) were found among the cetaceans.Residue levels of ΣMeO-PBDEs and 6OH-BDE47 + 2′OH-BDE68, and 2,4,6-triBPh and 6OH-BDE47 + 2′OH-BDE68 showed a significant positive correlation. These results may suggest that the large percentages of OH-PBDEs, MeO-PBDEs and 2,4,6-triBPh might share common source (i.e. biosynthesis by marine organisms), or metabolic pathway in cetacean species. Significant correlations were found between the concentrations of BDE99 and 2,4,5-triBPh. This result suggested that 2,4,5-triBPh in cetaceans could be a metabolite of BDE99.  相似文献   

4.
Information on accumulation of polychlorinated biphenyl metabolites (OH-PCBs) and hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in the blood of marine fish is limited. The present study, we determined the residue levels and patterns of PCBs, OH-PCBs, PBDEs, OH-PBDEs and methoxylated PBDEs (MeO-PBDEs) in the blood collected from scalloped hammerhead shark (Sphyrna lewini) and Japanese amberjack (Seriola quinqueradiata), species of predatory fish at Japanese coastal waters. The predominant homologues found in Japanese amberjacks were mono- and di-chlorinated OH-PCBs, and scalloped hammerhead sharks were octa-chlorinated OH-PCBs. The predominant OH-PCB isomers were lower-chlorinated OH-PCBs such as 6OH-CB2 and 2'OH-CB9 in Japanese amberjacks. This result suggests that exposure of Japanese amberjacks to lower-chlorinated OH-PCBs might be from the ambient aquatic environment. In scalloped hammerhead sharks, 4,4'diOH-CB202, 4OH-CB201 and 4OH-CB146 were the predominant isomers accounting for approximately 60% of the total OH-PCBs. The predominant MeO-PBDE isomers were 6MeO-BDE47 followed by 2'MeO-BDE68 in both species. As for OH-PBDE isomers, 6OH-BDE47 was predominant followed by 2'OH-BDE68 in Japanese amberjacks and scalloped hammerhead sharks. Residue levels of ΣMeO-PBDEs and ΣOH-PBDEs showed a significant positive correlation (p=0.029). This result suggests that MeO-PBDEs and OH-PBDEs share a common source or a metabolic pathway in fishes. Characteristic differences found in the profiles of OH-PCBs and OH-PBDEs in Japanese amberjack and scalloped hammerhead shark show the need for further studies on the differences in exposure profiles, metabolic capacities and toxic effects in fish.  相似文献   

5.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) found at high levels in the Baltic biota are mainly natural products, but can also be formed through metabolism or abiotic oxidation of polybrominated diphenyl ethers (PBDEs). The formation of OH-PBDEs is of concern since there is growing evidence of phenolic toxicity. This study investigates seasonal variations in levels of OH-PBDEs and MeO-PBDEs, focusing on an exposed species, the blue mussel (Mytilus edulis), sampled in the Baltic Sea in May, June, August and October of 2008. Both the OH-PBDE and MeO-PBDE levels in the mussels showed seasonal variations from May to October, the highest concentration of each congener appearing in June. The seasonal variation was more marked for OH-PBDEs than in MeO-PBDEs, but all congeners showed the same trends, except 6-MeO-BDE47 and 2′-MeO-BDE68, which did not significantly decline in concentrations after June. Biotic or abiotic debromination is suggested as a possible reason for the rapid decrease in methoxylated penta- and hexa-BDE concentrations observed in blue mussels from June to August, while the tetraBDE concentrations were stable. In addition, 1,3,7/1,3,8-tribrominated dibenzo-p-dioxins showed the same seasonal variation. The seasonal variations indicates natural formation and are unlikely to be due to transformation of anthropogenic precursors. The levels of PBDEs were fairly constant over time and considerably lower than those of the OH-PBDEs and MeO-PBDEs. The timing of the peaks in concentrations suggests that filamentous macro-algae may be important sources of these compounds found in the blue mussels from this Baltic Sea location.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs) and hydroxylated PBDEs (OH-PBDEs) were detected and quantified in Brown Bullhead (Ameiurus nebulosus) from Lake Ontario. Samples were collected in 2006 from three different locations near the city of Toronto: Frenchman’s Bay, Toronto Island, and Tommy Thompson Park. A total of 117 plasma samples were pooled into 19 samples, separating males and females by site of capture. Pooled samples were analyzed for 36 PBDEs, 20 MeO-PBDEs and 20 OH-PBDEs, but only six PBDEs, five MeO- and eight OH-compounds were confirmed against standards currently available. These peaks were quantified as “identified” peaks, while peaks matching ion ratios but not matching the retention time of the available standards were quantified as “unidentified” peaks. Both “identified” and “unidentified” concentrations were combined to obtain a total concentration. No significant variations were obtained for total PBDE concentrations, ranging from 3.33 to 9.02 ng g?1 wet weight. However, OH- and MeO-PBDE totals ranged over 1 order of magnitude among the samples (not detected – 3.57 ng g?1 wet weight for OH-PBDEs and not detected ?0.10 ng/g wet weight for MeO-PBDE). The results of this study suggested that these compounds are ubiquitous in biota. Source estimation of MeO- and OH-PBDEs in freshwater fish were discussed. Considering that up to date no freshwater sources for MeO- or OH-PBDEs have been reported, concentrations found should be mainly related to bioaccumulation from anthropogenic sources, although other sources could not be dismissed.  相似文献   

7.
The structurally related hydroxylated polybrominated diphenyl ether (PBDE) like hydroxylated 4,4′-dibromodiphenyl ether widely occur in precipitation, surface water, and biotic media. The origins of hydroxylated PBDEs (OH-PBDEs) are of particular interest due to their greater toxic potencies than the corresponding PBDEs. We studied the transformation behavior and products of 4,4′-dibromodiphenyl ether (BDE 15) mediated by lignin peroxidase (LiP), an extracellular enzyme that is produced by certain white rot fungus and is widely present in the natural environment. We found that BDE 15 can be effectively transformed through the reaction mediated by LiP, and two different mono-OH-dibromodiphenyl ethers were identified by using gas chromatography–mass spectrometry (GC-MS) and GC-MS/MS. In particular, we compared the reaction behavior for systems variously containing natural organic matter (NOM) and/or veratryl alcohol (VA), a metabolite that certain fungus produces along with LiP in nature. It was found that the VA’s enhancement effect on LiP performance was impaired by the presence of NOM. The findings in this study provide useful information for better understanding the origins of OH-PBDEs found in the environment.  相似文献   

8.
The uptake and elimination of six PBDE congeners (BDE-28, -47, -99, -100, -153, -209) were studied in juvenile common sole (Solea solea L.) exposed to spiked contaminated food over a three-month period, then depurated over a five-month period. The results show that all of the studied PBDEs accumulate in fish tissues, including the higher brominated congener BDE-209. Several additional PBDE congeners were identified in the tissues of exposed fish, revealing PBDE transformation, mainly via debromination. The identified congeners originating from PBDE debromination include BDE-49 and BDE-202 and a series of unidentified tetra-, penta-, and hepta- BDEs. Contaminant assimilation efficiencies (AEs) were related to their hydrophobicity (log Kow) and influenced by PBDE biotransformation. Metabolism via debromination appears to be a major degradation route of PBDEs in juvenile sole in comparison to biotransformation into hydroxylated metabolites.  相似文献   

9.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) are present in the ecosystem of the Baltic Sea. OH-PBDEs are known to be both natural products from marine environments and metabolites of the anthropogenic polybrominated diphenyl ethers (PBDEs), whereas, MeO-PBDEs appear to be solely natural in origin. Polybrominated dibenzo-p-dioxins (PBDDs) are by-products formed in connection with the combustion of brominated flame retardants (BFRs), but are also indicated as natural products in a red alga (Ceramium tenuicorne) and blue mussels living in the Baltic Sea. The aims of the present investigation were to quantify the OH-PBDEs and MeO-PBDEs present in C. tenuicorne; to verify the identities of PBDDs detected previously in this species of red alga and to investigate whether cyanobacteria living in this same region of the Baltic Sea contain OH-PBDEs, MeO-PBDEs and/or PBDDs. The red alga was confirmed to contain tribromodibenzo-p-dioxins (triBDDs), by accurate mass determination and additional PBDD congeners were also detected in this sample. This is the first time that PBDDs have been identified in a red alga. The SigmaOH-PBDEs and SigmaMeO-PBDEs concentrations, present in C. tenuicorne were 150 and 4.6 ng g(-1) dry weight, respectively. In the cyanobacteria 6 OH-PBDEs, 6 MeO-PBDEs and 4 PBDDs were detected by mass spectrometry (electron capture negative ionization (ECNI)). The PBDDs and OH-PBDEs and MeO-PBDEs detected in the red alga and cyanobacteria are most likely of natural origin.  相似文献   

10.
The uptake, elimination and transformation of six PBDE congeners (BDE-28, -47, -99, -100, -153, -209) were studied in juvenile common sole (Solea solea L.) exposed to spiked contaminated food over a three-month period, and then depurated over a five-month period. Methoxylated (MeO-) and hydroxylated (OH-) PBDEs were determined in fish plasma exposed to PBDEs and compared to those obtained in control fish. While all MeO- and some OH- congeners identified in fish plasma were found to originate from non-metabolic sources, several OH- congeners, i.e., OH-tetraBDEs and OH-pentaBDEs, were found to originate from fish metabolism. Among these, 4′-OH-BDE-49 was identified as a BDE-47 metabolite. Congener 4′-OH-BDE-101, identified here for the first time, may be the result of BDE-99 metabolic transformation. Our results unequivocally showed that PBDEs are metabolised in juvenile sole via the formation of OH- metabolites. However, this was not a major biotransformation route compared to biotransformation through debromination.  相似文献   

11.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) along with methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have been frequently identified as natural compounds in marine environment and also assumed as metabolites of PBDEs. In the present study, nine OH-PBDE, nine MeO-PBDE and 10 PBDE congeners were studied in the sewage sludge collected from 36 municipal wastewater treatment plants (WWTPs) in 27 cities of China. The results suggest that OH-PBDEs and PBDEs are ubiquitous in sewage sludge in China, however, methoxylated PBDEs were not detectable. Composition profiles of detected OH-PBDE congeners were different depending on the sampling location. ΣOH-PBDEs in WWTPs sludge ranged from 0.04 to 2.24 ng g?1 dry weight (mean: 0.35 ng g?1 dry weight). The total amount of the two most prominent congeners (6-OH-BDE-47 + 2′-OH-BDE-68) accounted for about 53.3–100% of the sum of all six identified congeners. A significant linear relationship was found between 6-OH-BDE-47 and 2′-OH-BDE-68. A distinct geographical distribution of ΣOH-PBDEs was observed with greater concentrations of OH-PBDEs at coastal areas than inland regions in China.  相似文献   

12.
Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO2-PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO2-PCB and PBDE congener patterns showed significant differences (p相似文献   

13.
Bastos PM  Eriksson J  Green N  Bergman A 《Chemosphere》2008,70(7):1196-1202
The term persistence has been used to confusion since it is used as a conceptual parameter without a uniform definition. Work is therefore being done in order to unite ideas and describe persistence based on the chemical reactivity and chemico-physical properties of compounds via investigation of the main degradation pathways in the environment; photolysis, hydrolysis-substitution-elimination (hse), oxidation, reduction and radical reactions. The present work is focused on developing a method to determine oxidative degradation rates of chemicals and thereby measurement of their susceptibility to undergo oxidation reactions. The method based on potassium permanganate works well for water soluble compounds and is easy, robust, inexpensive and reproducible. By using the method and varying the analysed substances, the degradation rates for brominated phenols, two chlorinated phenols and high volume production compounds such as tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA) and bisphenol A (BPA) have been determined at pH 7.6+/-0.2. The reaction rates of the two halogenated BPA's are particularly fast, giving half-lives in seconds. The other test compounds have slower reaction rates but easily measured under the reaction conditions applied. The reactions are temperature dependent. There is evidence that pK(a) and the substitution pattern of the halogens affects the rate of the reactions. The method is robust and applicable for reaction rate constant measurements of present and potential future environmental contaminants.  相似文献   

14.
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that exert neurodevelopmental and neurobehavioral effects in vivo in humans and animals. Acute in vitro neurotoxic effects include changes in cell viability, oxidative stress, and basal intracellular calcium levels. Though these acute cellular effects could partly explain the observed in vivo effects, other mechanisms, such as effects on calcium influx and neurotransmitter receptor function, likely contribute to the disturbance in neurotransmission. This concise review combines in vitro data on cell viability, oxidative stress and basal calcium levels with recent data that clearly demonstrate that (hydroxylated) PCBs and (hydroxylated) PBDEs can exert acute effects on voltage-gated Ca2+ channels as well as on excitatory and inhibitory neurotransmitter receptors in vitro. These novel mechanisms of action are shared by NDL-PCBs, OH-PBDEs, and some other persistent organic pollutants, such as tetrabromobisphenol-A, and could have profound effects on neurodevelopment, neurotransmission, and neurobehavior in vivo.  相似文献   

15.
To evaluate the biomagnification extent of polybrominated diphenyls ethers (PBDEs) and polychlorinated biphenyls (PCBs) in a highly contaminated freshwater food web from South China, trophic magnification factors (TMFs) for 18 PBDE congeners and 53 PCB congeners were calculated. The TMF values ranged 0.26-4.47 for PBDEs and 0.75-5.10 for PCBs. Forty-five of 53 PCBs and BDEs 47, 100 and 154 had TMFs greater than one, suggesting their biomagnification in the present food web. The TMFs for PBDEs were generally smaller than those for PCBs with the same degree of halogenation, indicating a lower biomagnification potential for PBDEs compared to PCBs. For PCBs, it followed a parabolic relationship between TMFs and log KOW (octanol-water partition coefficient). However, this relationship was not significant for PBDEs, possibly due to the more complex behaviors of PBDEs in the food web (e.g., metabolism), compared to that of PCBs.  相似文献   

16.
In the present study were two favorite edible fish species for local residents, i.e., mandarin fish and crawfish, collected from the Shanghai market and analyzed for selected organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), hexabromocyclododecane (HBCDD), polybrominated diphenyl ethers (PBDEs) and methoxylated PBDEs (MeO-PBDEs). Efforts were also made to identify the potential sources of these contaminants. Comparable concentrations of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and HBCDD were found in muscle tissue of mandarin fish from Guangdong (GDF), the Pearl River Delta and from Taihu Lake (TLF), the Yangtze River Delta. Levels of chlordanes, PCBs and PBDEs were about one magnitude lower in TLF compared to GDF. The concentrations of OCPs in the butter-like gland of the crawfish (CFB) were 2-5 times of those in the crawfish muscle (CFM) while concentrations of PCBs, PBDEs and MeO-PBDEs were comparable. The different patterns and levels of chlorinated and brominated organohalogen contaminants seen in mandarin fish from GDF and TLF indicates that different types of chemicals might be used in the two delta regions. The present study also shows a good correlation between the concentrations of hexachlorobenzene (HCB) and pentachloroanisol (PCA) in fish for the first time. Fish consumption limits based on chemical contaminants with non-carcinogenic effects were calculated. The estimated maximum daily consumption limit for GDF, TLF, CFM and CFB were 1.5, 2.6, 3.7 and 0.08 kg, respectively, indicating no significant risk regarding the persistent organic pollutants measured in the present study.  相似文献   

17.
Lacorte S  Ikonomou MG 《Chemosphere》2009,74(3):412-420
The presence of polybrominated diphenyl ethers (PBDEs) from mono to hepta brominated and 11 hydroxylated (OH-) and methoxylated (MeO-) PBDEs was examined in 37 breast milk samples collected from 11 mothers living in Barcelona. An extraction method based on accelerated solvent extraction followed by gas chromatography coupled to high resolution mass spectrometry was used to inequivocally identify all target compounds at the low pg g(-1) lw level. Data obtained were examined for absolute and relative concentrations and specific PBDE, OH- and MeO-PBDE congener patterns. Sigma PBDE concentration ranged between 1,161 and 1,372,797 pg g(-1) lw and BDEs 47, 99, 100, 153 and 183 accounted for more than 80% of the total PBDEs. All tri and tetra OH- and MeO-PBDEs compounds were detected at levels between 6 and 14,984 pg g(-1)lw. The median ratio OH/PBDE and MeO-PBDEs/PBDEs was from 2.9% to 1.6%, respectively, suggesting either that PBDE metabolism to OH- and MeO- derivatives is not an important degradation route in humans or either OH- and MeO-PBDEs are rapidly excreted. No significant correlation was observed between PBDEs and OH- and MeO-PBDE, although OH- and OMe-PBDEs co-occurred in mothers' milk (R(2)=0.5349). According to the daily intake of PBDEs and OH- and MeO-PBDEs, which was between 0.47 and 363 ng d(-1) (excluding a smoking donor), potential health risks associated with these compounds are assessed.  相似文献   

18.
Risk assessment of xenobiotics requires a comprehensive understanding of their transformation in the environment. As most of the transformation processes usually involve a redox reaction or a hydrolysis as the first steps of the transformation, we applied an approach that uses an electrochemical cell to investigate model “redox” reactions in aqueous solutions for environmental processes. We investigated the degradation of a variety of xenobiotics from polar to nonpolar and analyzed their degradation products by on-line coupling of electrochemistry with mass spectrometry (EC-MS). Furthermore, we evaluated possible binding reactions with regard to the generation of non-extractable residues with some model substances (catechol, phthalic acid, γ-l-Glutamyl-l-cysteinyl-glycine (GSH) and l-histidine) deduced from a natural organic matter (NOM) structure model and identified possible binding-sites.Whereas typically investigations in soil/water-systems have been applied, we used to our knowledge for the first time a bottom-up approach, starting from the chemicals of interest and different model substances for natural organic matter to evaluate chemical binding mechanisms (or processes) in the EC-MS under redox conditions. Under oxidative conditions, bindings of the xenobiotics with catechol, GSH and histidine were found, but no reactions with the model compound phthalic acid were observed. In general, no chemical binding has yet been found under reductive conditions. In some cases (i.e. benzo[a]anthracene) the oxidation product only underwent a binding reaction, whereas the xenobiotic itself did not undergo any reactions.EC-MS is a promising fast and simple screening method to investigate the environmental behavior of xenobiotics and to evaluate the potential risks of newly synthesized substances.  相似文献   

19.
Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logKows. The biota soil accumulation factors of PBDEs also declined with logKow. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly.  相似文献   

20.

Purpose

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have emerged as contaminants of environmental concerns because they pose potential risks to human and animal health. The purpose of this study was to investigate the in vitro metabolism of OH-PBDEs and their potential inhibition against 17??-estradiol (E2) metabolism.

Methods

Rat liver microsomes were used as a source of P450 enzymes in an in vitro metabolism study of OH-PBDEs. Inhibition of E2 metabolism and kinetic study were performed by incubating with rat liver microsomes in the presence of OH-PBDEs.

Results

The obtained data clearly demonstrated that OH-PBDEs, especially those congeners with lower bromination, could be metabolized to bromophenol and diOH-PBDEs. The less metabolic rate of OH-PBDEs was observed with the increasing number of bromine substituents. OH-PBDEs with hydroxyl group and bromine adjacent to the ether bridge showed faster metabolic rates. In addition, the results showed non-competitive inhibition of E2 metabolism by OH-PBDEs with IC50 values in the range from 13.7 to 55.2???M. The most potent OH-PBDE inhibitor was found to be 3??-OH-BDE-100. The inhibitory potencies for OH-PBDEs were significantly higher than those of parent PBDE and methoxylated metabolites, providing the evidence that PBDEs exerted estrogenic activity in part by their hydroxylated metabolites.

Conclusions

OH-PBDEs exhibited large differences in their capacity to be metabolized and to inhibit E2 metabolism in rat liver microsomes. The finding might increase our understanding of healthy risk associated with PBDEs in human and wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号