首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 502 毫秒
1.
厌氧暗发酵产氢细菌研究进展   总被引:3,自引:1,他引:2  
厌氧暗发酵产氢细菌可在暗环境下分解有机物,产生氢气,在厌氧发酵制氢技术发展中发挥重要作用.对近年来国内外产氢细菌的分离、生理特性、产氢能力研究以及实际应用等方面的进展进行了综述,提出了目前产氢细菌研究存在的问题,认为应加强高效产氢细菌的分离、菌群间代谢网络构建以及弱化产氢过程中有机挥发酸的反馈抑制等方面的研究.  相似文献   

2.
发酵产氢已经建立和应用了一些动力学模型.对描述批次发酵产氢过程的动力学模型,描述各种因子对其影响的动力学模型,以及探讨基质降解速率、产氢细菌(HPB)生长速率和产物形成速率关系的动力学模型进行了综述分析.分析表明,改进的Gompertz模型被广泛用于描述批次发酵产氢过程;Monod模型则广泛应用于描述基质浓度对基质降解...  相似文献   

3.
为提高微生物电解池(MEC)利用氢发酵废水产氢速率,以丁酸为底物在微生物燃料电池(MFC)中驯化富集阳极产电微生物,采用单室双阳极MEC处理玉米秸秆的氢发酵废水,通过对关键过程参数的优化,实现氢发酵废水高效产氢。结果表明,当外加电压为0.8 V时,产氢速率和玉米秸秆氢发酵废水中COD的去除率分别达到(5.31±0.13)m~3·(m~3·d)~(-1)和(58±2)%。其中,乙酸、丁酸、丙酸、乙醇的去除率分别达到(95±2)%、(76.2±0.8)%、(93±3)%、(98±1)%。与单室单阳极MEC相比,单室双阳极MEC利用玉米秸秆氢发酵废水进行深度产氢的速率提高了1.22倍。此外,MEC生物阳极驯化方式对MEC利用玉米秸秆氢发酵废水产氢具有重要影响。与利用乙酸为底物驯化富集的生物阳极相比,以丁酸为底物驯化富集的生物阳极去除COD的能力和MEC产氢速率都有提高。  相似文献   

4.
以木薯酒精废水为厌氧发酵产氢底物,以中温(37℃)厌氧颗粒污泥作为接种物.研究了高温条件(60℃)下厌氧发酵产氢的可行性;并比较了60~80℃条件下的累积产氢量,产氢速率和液相发酵产物组成,以确定温度对木薯酒精废水厌氧发酵产氢的影响以及不同温度下厌氧发酵产氢菌的代谢类型.结果表明,60℃时累积产氢量为383 mL(木薯酒精废水用量140 mL)、产氢率为70.0 mL(以每克挥发性固体(VS)计),中温厌氧颗粒污泥适合作为高温条件下木薯酒精废水厌氧发酵产氢的接种物;从60℃升高到80℃时,累积产氢量逐渐下降,最大产氢速率逐渐降低,80℃时产氢完全受到抑翩.70℃为产氢的临界点,低于70℃时厌氧发酵产氢菌的代谢类型属典型的丁酸型发酵,此过程中伴随着大量氢气产生,大于等于70℃时,正丁酸生成受到严重抑制,累积产氢量迅速降低;氢气的产生主要来自于溶解性碳水化合物的分解.  相似文献   

5.
初始pH对产氢发酵液厌氧产甲烷的影响研究   总被引:2,自引:2,他引:0  
以啤酒厂厌氧颗粒污泥为接种物,对葡萄糖废水产氢后的发酵液进行间歇式中温厌氧发酵产甲烷实验.研究了不同的进水初始pH为5.5±0.2、6.0±0.2、6.5±0.2和7.0±0.2时对产氢发酵液产甲烷的影响,并以产氢发酵液的原始pH(4.2~4.4)作为对照.结果表明:产氢发酵液厌氧产甲烷必须添加一定量的碱加以调节,进水...  相似文献   

6.
餐厨垃圾厌氧产氢综述   总被引:1,自引:0,他引:1  
针对餐厨垃圾厌氧产氢过程,从工艺、单组分底物厌氧产氢和过程机理研究阐述了国内外进展,并对未来研究发展方向进行了展望.研究成果表明,餐厨垃圾厌氧发酵产氢过程可行,但影响因素多,系统不稳定,大部分研究停留在实验室小试阶段.尚需针对餐厨垃圾厌氧发酵产氢优势菌种选育、生态因子调控、代谢机理、反应器改进和系统控制模拟等方面开展研究,为该技术的大规模应用提供研究基础.  相似文献   

7.
不同热处理温度对污泥厌氧发酵产氢的影响   总被引:1,自引:0,他引:1  
污水处理厂污泥产生量日益增加,对环境的影响倍受关注。污泥除了含有大量的葡萄糖、蛋白质等有机物外,还包括大量的微生物,具有厌氧发酵产氢的潜能。通过批式实验系统研究了热处理污泥厌氧发酵产氢情况。研究结果表明,经过适当热处理,可以抑制耗氢菌,同时能保持产氢菌的活性,另外,对污泥还有一定的融胞作用,使污泥中溶解性的糖和蛋白质的含量增加,提高预处理污泥的产氢效率;最佳的热处理温度为75℃,处理后污泥进行厌氧发酵产氢的最大累积产氢量为18.32 mL,比产氢率3.49 mL/g VS。  相似文献   

8.
分析了餐厨垃圾酸化过程中的pH、挥发性脂肪酸(VFA)产量及含水量等参数的变化,考察了酸化餐厨垃圾厌氧消化过程中的产氢情况,并探讨了调节初始pH对酸化餐厨垃圾产氢的影响.结果表明,餐厨垃圾的酸化是一个前期极为快速的过程,经过1d的酸化,新鲜餐厨垃圾的pH就从6.0左右下降到4.5左右,而后pH缓慢下降,经过5~6 d的酸化,pH下降到4.0以下;餐厨垃圾酸化过程中,产生的VFA主要是异戊酸,其浓度变化与VFA的浓度变化趋势较为一致;酸化时间为1、3、4、5、6d的餐厨垃圾体系产生的氢气的最高体积分数呈递减趋势,产氢量也呈现出相同的变化趋势;初始pH对酸化餐厨垃圾体系的产氢影响是很大的,调节到相同初始pH的不同体系,产氢的结果可以相近.因此,pH是酸化餐厨垃圾厌氧消化产氢过程中必须控制的关键因素之一.  相似文献   

9.
底物初始浓度对光合细菌产氢动力学特性的影响   总被引:1,自引:0,他引:1  
实验研究了底物初始浓度对光合细菌产氢动力学特性的影响,并对光合细菌产氢得率和初始底物转化为氢气得率进行比较,分析底物初始浓度对光合细菌产氢代谢的影响,实验发现底物初始浓度为120 mmol/L时最适合光合细菌的产氢代谢,底物初始浓度达到140 mmol/L时,光合细菌主要进行生物量合成和产酸代谢,得到各浓度梯度下的最大生物量,但对产氢代谢产生抑制作用,表明最大生物量与最大的产氢能力之间不成正比关系及光合细菌产生CO2机制与产氢机制不同;光合细菌最大比产氢活性表现在对数生长期,最大生物量出现在稳定期。实验证明,光合细菌对数生长期受底物浓度影响大,底物浓度低,最大生物量所对应的时间相对较早,底物浓度增大,最大生物量所对应的时间相对延后。  相似文献   

10.
在相同接种配比(接种污泥占餐厨垃圾的质量分数为30%)条件下,研究了4种不同来源污泥(压滤污泥、厌氧污泥、曝气污泥和河底淤泥)添加或不添加缓冲剂时对餐厨垃圾厌氧发酵产氢效果的影响.结果发现,在不添加缓冲剂时.4种污泥接种餐厨垃圾厌氧发酵平均产氢量依次为厌氧污泥>河底淤泥>压滤污泥>曝气污泥,接种厌氧污泥的餐厨垃圾平均产氢量最高,达10.11mL(以每克挥发性固体(VS)计,下同);而添加缓冲剂时.4种污泥接种餐厨垃圾厌氧发酵平均产氢量依次为厌氧污泥>曝气污泥>压滤污泥>河底淤泥,接种厌氧污泥的餐厨垃圾平均产氢量也最高,为33.72 mL,且体系pH得以缓冲.  相似文献   

11.
研究了21、37和47 d产甲烷物料代替新鲜污泥接种于污泥与餐厨垃圾联合厌氧发酵产氢余物的厌氧发酵产甲烷情况,发现接种47 d产甲烷物料的消化系统在最佳接种量50%条件下的产甲烷效能显著优于接种新鲜污泥的消化系统,不仅提高了产甲烷率,还大大缩短了消化时间。并且3种消化系统产甲烷率和比产甲烷率均为47 d37 d21 d,分别为3.78、3.88、6.15 mL/g和0.172、0.277、0.559 mL/(g·d),完成产甲烷过程的消化时间为47 d37 d21 d。在一定的消化时间范围内,产甲烷菌被驯化时间越长,接种于产氢余物中的产甲烷效能越好。  相似文献   

12.
以啤酒厂废水处理厂UASB中的厌氧污泥为种泥,葡萄糖为基质,研究了厌氧序批式反应器产氢。控制反应器内pH为4.0~4.5,温度为(36±1)℃,水力停留时间为8 h,当进水葡萄糖浓度为4 000 mg/L,容积负荷为12 kg/(m3.d)条件下,该厌氧序批式反应器实现了连续高效厌氧产氢。生物气中的氢气含量约为48%~53%,基质产氢率为1.1 mol/mol葡萄糖,COD去除率为15%~25%,最大比产氢速率为84.5 mol/(kg VSS.d)。液相末端发酵产物中乙醇和乙酸的含量占液相末端发酵产物总量的80%以上,表明该反应器内进行的是乙醇型发酵厌氧产氢。厌氧序批式反应器完全可以实现连续高效厌氧产氢,比较适用于日处理量较小的高浓度含糖废水。  相似文献   

13.
Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.  相似文献   

14.
Environmental Science and Pollution Research - In the present study, fermentative production of bacterial nanocellulose (BNC) by using Komagataeibacter xylinus strain SGP8 and characterization of...  相似文献   

15.

A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.

  相似文献   

16.
The economy of an industrialized country is greatly dependent on fossil fuels. However, these nonrenewable sources of energy are nearing the brink of extinction. Moreover, the reliance on these fuels has led to increased levels of pollution which have caused serious adverse impacts on the environment. Hydrogen has emerged as a promising alternative since it does not produce CO2 during combustion and also has the highest calorific value. The biohythane process comprises of biohydrogen production followed by biomethanation. Biological H2 production has an edge over its chemical counterpart mainly because it is environmentally benign. Maximization of gaseous energy recovery could be achieved by integrating dark fermentative hydrogen production followed by biomethanation. Intensive research work has already been carried out on the advancement of biohydrogen production processes, such as the development of suitable microbial consortium (mesophiles or thermophiles), genetically modified microorganism, improvement of the reactor designs, use of different solid matrices for the immobilization of whole cells, and development of two-stage process for higher rate of H2 production. Scale-up studies of the dark fermentation process was successfully carried out in 20- and 800-L reactors. However, the total gaseous energy recovery for two stage process was found to be 53.6 %. From single-stage H2 production, gaseous energy recovery was only 28 %. Thus, two-stage systems not only help in improving gaseous energy recovery but also can make biohythane (mixture of H2 and CH4) concept commercially feasible.  相似文献   

17.
Mu Y  Yu HQ  Wang Y 《Chemosphere》2006,64(3):350-358
The role of pH in the fermentative H(2) production from an upflow acidogenic granule-based reactor was investigated in this study. Experimental results show that all H(2) partial pressure, H(2) production rate and H(2) yield were pH-dependent, in the range of 2.8 x 10(4)-5.2 x 10(4)Pa, 61-145 ml-H(2)l(-1)h(-1) and 0.68-1.61 mol-H(2)mol-glucose(-1), respectively. The maximum H(2) partial pressure was observed at pH 3.4, while both maximum H(2) production rate and H(2) yield were found at pH 4.2. Acetate, propionate, butyrate, i-butyrate, valerate, caporate and ethanol were present in the effluent of this UASB reactor, and their distribution was also pH-dependent. As pH was decreased from 4.2 to a lower level of 3.4 or increased to a higher level of 6.3, the fermentative type of this H(2)-producing reactor would shift from butyrate-type to caporate- or ethanol-type. Thermodynamic analysis was performed to explore the possible metabolic pathways of caproate and valerate formation. The metabolic pathway of caproate formation was pH-dependent, while that of valerate formation was pH-independent. A neural network model was designed, trained and validated. It was able to successfully describe the daily variations of H(2) partial pressure and H(2) yield of the reactor, and to predict its steady state performance at various pHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号