首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A thermodynamic sorption model and a diffusion model based on electric double layer (EDL) theory are integrated to yield a surface chemical model that treats porewater chemistry, surface reactions, and the influence of charged pore walls on diffusing ions in a consistent fashion. The relative contribution of Stern and diffuse layer to the compensation of the permanent surface charge represents a key parameter; it is optimized for the diffusion of Cs in Kunipia-F bentonite, at a dry density of 400 kg/m3. The model is then directly used to predict apparent diffusivities (Da) of Cs, Sr, Cl-, I- and TcO4- and corresponding distribution coefficients (Kd) of Cs and Sr in different bentonites as a function of dry density, without any further adjustment of surface chemical and EDL parameters. Effective diffusivities (De) for Cs, HTO, and TcO4- are also calculated. All calculated values (Da, De, Kd) are fully consistent with each other. A comparison with published, measured data shows that the present model allows a good prediction and consistent explanation of (i) apparent and effective diffusivities for cations, anions, and neutral species in compacted bentonite, and of (ii) Kd values in batch and compacted systems.  相似文献   

2.
Retardation capacity of organophilic bentonite for anionic fission products   总被引:7,自引:0,他引:7  
Sorption and diffusivity of iodide and pertechnetate (I- and TcO4-) on MX-80 bentonite with different hexadecylpyridinium (HDPy+) loadings were studied using equilibrium solutions of different ionic strengths. In HDPy(+)-modified bentonite, iodide and pertechnetate ions exhibited increasing sorption (characterized by the distribution ratio, Rd), while Cs+ and Sr2+ showed decreasing sorption with increasing organophilicity. In case of medium-loading levels, the simultaneous sorption of anions (I- and TcO4-) and cations (Cs+ and Sr2+) was observed. Sorption of ions was influenced by the composition of the electrolytes employed. It decreased gradually with increasing ionic strength of the electrolyte solutions. The experiments revealed the general tendency that the diffusivity (Da [cm2.s-1]) for iodide and pertechnetate decreases with increasing organophilicity and increases with increasing ionic strength of the equilibrium solutions, confirming the results of the sorption experiments. Additionally, some mineralogical and chemical investigations, like IR spectral analysis of the organo-bentonite samples and exchange behavior of HDPy+, were performed. On the basis of these analyses, it was concluded that the alkylammonium ions are sorbed as (1) HDPy+ cations, (2) HDPyCl molecules and (3) micelles with decreasing binding intensities in this order.  相似文献   

3.
Radionuclide sorption by natural and modified clays is extensively accepted to be an important process from the radioactive waste point of view. This work focused on modification of natural attapulgite with a layered double hydroxide to produce a novel chemisorbent for Sr2+, Ni2+, and Co2+ removal from multicomponent solution. The structural and surface characteristics of both attapulgite (ATP) and modified attapulgite (LDH-ATP) were investigated using XRD, FTIR, SEM, and thermal analysis. Comparison of sorption features of Sr2+, Ni2+, and Co2+ onto ATP and LDH-ATP was achieved; the results indicated that LDH-ATP was the most efficient sorbent for Sr2+, Ni2+, and Co2+. Kinetic studies established that the sorption is fast and reaching >90% within 30 min. The sorption of Sr2+, Ni2+, and Co2+ are well defined by non-linear pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity was determined using homogeneous surface diffusion (HSDM) model and found in the order 10−13 m2/min; this confirmed that the sorption of the three ions is chemisorption process. LDH-ATP can be employed as a candidate chemisorbent for the removal of some metal ions from waste solution.  相似文献   

4.
Sorption of 137Cs, 90Sr, 154Eu and 141Ce by magnetite has been studied at varying pH (4 to 11) in the presence and absence of humic acid. The sorption studies have also been carried out at varying ionic strength (0.01 to 0.2 M NaClO4) and humic acid concentration (2 to 20 mg/L). Percentage sorption of 137Cs and 90Sr was found to be pH dependent, with the sorption increasing with increasing pH of the suspension. At any pH, the percentage sorption of 90Sr was higher than that of 137Cs. The results have been explained in terms of the electrostatic interaction between the positively charged metal ions and the surface charge of the magnetite which becomes increasingly negative with increasing pH. On the other hand, 154Eu and 141Ce were found to be strongly sorbed by the magnetite at all pH values, with the sorption being independent of pH. The strong sorption of trivalent and tetravalent metal ions suggests the role of complexation reactions during sorption, apart from the electrostatic interactions. However, in the case of 141Ce surface precipitation of Ce(III) formed by reduction of Ce(IV) in the presence of magnetite cannot be ruled out. Presence of humic acid (2 mg/L) was found to have negligible effect on sorption of all metal ions.  相似文献   

5.
The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional method, suggesting that the diffusometry-based NMR well logging with gradient coils is applicable to the in-situ permeability measurement of strata. The present study demonstrated that X-ray CT using synchrotron radiation is a powerful tool for obtaining 3-D pore structure images without the beam-hardening artifacts inevitable in conventional CT using X-ray tubes.  相似文献   

6.
Can C  Jianlong W 《Chemosphere》2007,69(10):1610-1616
The relationship between metal ionic characteristics and the maximum biosorption capacity (q(max)) was established using QSAR model based on the classification of metal ions (soft, hard and borderline ions). Ten kinds of metal ions (Ag(+), Cs(+), Zn(2+), Pb(2+), N(i2+), Cu(2+), Co(2+), Sr(2+), Cd(2+), Cr(3+)) were selected and the waste biomass of Saccharomyces cerevisiae obtained from a local brewery was used as biosorbent. Eighteen parameters of physiochemical characteristics of metal ions were selected and correlated with q(max). Classification of metal ions could improve the QSAR models and different characteristics were significant in correlating with q(max), such as polarizing power Z(2)/r or the first hydrolysis constant |logK(OH)| or ionization potential IP. X(m)(2)r seemed to be suitable for metal ions including soft ions, and Z(2)/r, |logK(OH)| and IP suitable for only soft ions or metal ions excluding soft ions. It provided a new way to predict the biosorptive capacity of metal ions.  相似文献   

7.
In order to determine the mechanisms of the retention of 60Co, 85Sr and 134Cs in natural silica sand columns, desorption experiments were performed by changes of pH and ionic strength and by injection of natural organic matter (NOM). Injection of KCl (0.1 M) resulted in a high release of 60Co (60-100%) and 85Sr (72-100%) but a smaller release of 134Cs (31-66%). Only limited release of 60Co (66%) and 85Sr (71%) and no release of 134Cs were observed by injection of NOM. The different percentages of desorption were related to the chemical characteristics of the organic colloids previously retained in columns before the desorption step. The results evidenced different sorption processes on energetically heterogeneous surface sites. According to the initial conditions, the binding of the radionuclides to the solid phase resulted from weak and easily reversible sorption processes to strong association probably by inner sphere complexes. The rather weak release of 134Cs by KCl was attributed to the strong retention of 134Cs by clay coatings on the natural silica sand surfaces.  相似文献   

8.
Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases.  相似文献   

9.
A program of in situ experiments, supported by laboratory studies, was initiated to study diffusion in sparsely fractured rock (SFR), with a goal of developing an understanding of diffusion processes within intact crystalline rock. Phase I of the in situ diffusion experiment was started in 1996, with the purpose of developing a methodology for estimating diffusion parameter values. Four in situ diffusion experiments, using a conservative iodide tracer, were performed in highly stressed SFR at a depth of 450 m in the Underground Research Laboratory (URL). The experiments, performed over a 2 year period, yielded rock permeability estimates of 2 x 10(-21) m(2) and effective diffusion coefficients varying from 2.1 x 10(-14) to 1.9 x 10(-13) m(2)/s, which were estimated using the MOTIF code. The in situ diffusion profiles reveal a characteristic "dog leg" pattern, with iodide concentrations decreasing rapidly within a centimeter of the open borehole wall. It is hypothesized that this is an artifact of local stress redistribution and creation of a zone of increased constrictivity close to the borehole wall. A comparison of estimated in situ and laboratory diffusivities and permeabilities provides evidence that the physical properties of rock samples removed from high-stress regimes change. As a result of the lessons learnt during Phase I, a Phase II in situ program has been initiated to improve our general understanding of diffusion in SFR.  相似文献   

10.
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish Asp? Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na(+), 85Sr(2+), 47Ca(2+)and more strongly sorbing 86Rb(+), 133Ba(2+), 137Cs(+). Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2-15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted K(d) values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25-60, but agree within a factor of 3-5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning K(d)s is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.  相似文献   

11.
A three-site cation exchange model is proposed to describe the concentration dependent uptake of Cs on natural argillaceous rock systems. Major premises in the model are that the sorption of Cs is dominated by the illite mineral component in the rock and that there is a fixed relationship between the site capacities of the three site types denoted as frayed edge, type II and planar sites. The definition of a “reference illite” with a cation exchange capacity of 0.2 equiv. kg-1 allows the three site capacities to be fixed in the model calculations over the weight fraction of illite in the argillaceous rocks. Up to Cs equilibrium concentrations of 10-3 M sorption occurs predominantly on the frayed edge and type II sites (higher affinity sites), with the planar site type playing only a minor role. Competition with Cs for sorption on the former two site types arises predominantly from monovalent cations such as K, Rb and NH4 which have low hydration energies. H and Na (except at high concentrations) are considerably less competitive and bivalent cations such as Mg, Ca and Sr are effectively non-competitive. A consistent set of selectivity coefficients for Cs with respect to K, Rb, NH4 and Na was derived from analyses and modelling of a wide range of Cs sorption data available in the open literature on pure illites from many different sources. The model was tested against four Cs sorption isotherm data sets determined on argillaceous rocks: Boom clay, Oxford clay, Palfris marl and Opalinus clay. The water chemistries and illite contents given in these experiments allowed the Cs sorption isotherms to be predicted. It is concluded that the Cs sorption model presented here, in which there are no free parameters, can be used to predict the uptake of Cs at equilibrium concentrations below 10-3 M to within a factor of 2 to 3 in natural argillaceous rock systems.  相似文献   

12.
The effect of ions, including Na(+), Mg(2+), Ca(2+), Cl(-), SO(4)(2-) and CO(3)(2-), at various initial concentrations, on the kinetics of cadmium sorption by chitin was studied at 25 degrees C and free initial pH solution in batch conditions. The presence of these ions in solution was found to inhibit the uptake of cadmium by chitin to different degrees: sodium and chloride ions have no significant effect. For Mg(2+), Ca(2+), SO(4)(2-) and CO(3)(2-) ions, the effects ranged from a large inhibition of cadmium by Ca(2+) and CO(3)(2-) to a weak inhibition by Mg(2+) and SO(4)(2-). These results indicate that the uptake sites of these ions are the same. No ion was found to enhance cadmium uptake. The results also showed that the kinetics of sorption are best described by a pseudo second-order expression than a first or second-order model.  相似文献   

13.
Heavy metal pollution is a common environmental problem all over the world. The purpose of the research is to examine the applicability of bagasse fly ash (BFA)—an agricultural waste of sugar industry used for the synthesis of zeolitic material. The zeolitic material are used for the uptake of Pb(II) and Cd(II) heavy metal. Bagasse fly ash is used as a native material for the synthesis of zeolitic materials by conventional hydrothermal treatment without (conventional zeolitic bagasse fly ash (CZBFA)) and with electrolyte (conventional zeolitic bagasse fly ash in electrolyte media (ECZBFA)) media. Heavy metal ions Pb(II) and Cd(II) were successfully seized from aqueous media using these synthesized zeolitic materials. In this study, the zeolitic materials were well characterized by different instrumental methods such as Brunauer–Emmett–Teller, XRF, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopic microphotographs. The presence of analcime, phillipsite, and zeolite P in adsorbents confirms successful conversion of native BFA into zeolitic materials. Seizure modeling of Pb(II) and Cd(II) was achieved by batch sorption experiments, isotherms, and kinetic studies. These data were used to compare and evaluate the zeolitic materials as potential sorbents for the uptake of heavy metal ions from an aqueous media. The Langmuir isotherm correlation coefficient parameters best fit the equilibrium data which indicate the physical sorption. Pseudo-second-order and intra-particle diffusion model matches best which indicates that the rate of sorption was controlled by film diffusion. The column studies were performed for the practical function of sorbents, and breakthrough curves were obtained, which revealed higher sorption capacity as compared to batch method. Synthesized zeolitic material (CZBFA and ECZBFA), a low-cost sorbent, was proven as potential sorbent for the uptake of Pb(II) and Cd(II) heavy metal ions.  相似文献   

14.
Poon CS  Chen ZQ 《Chemosphere》1999,38(3):663-680
This paper introduces a research work on studying the possibility of using a flow-through leaching test method to simulate the leaching behaviour of the cement-based stabilized/solidified (S/S) hazardous wastes. Both the flow-through leaching and the more common flow-around (dynamic leaching) test methods were carried out in the study to compare the leaching behaviour of the solidified waste under different leaching environments. The solidified waste samples were prepared from five kinds of heavy metals with two kinds of binders. The metals were Pb2+, Zn2+, Cu2+, Ni2+ (positive ions as nitrate), and Cr6+ (as a negative ion in potassium dichromate), and the binders were type I Ordinary Portland Cement (OPC) and Pulverised Fuel Ash (PFA). The results of two series of flow-through and flow-around leaching experiments are reported and compared in this paper. Mathematical models for simulating the leaching behaviour of the flow-through and flow-around leaching conditions were used to determine the diffusivities of the contaminants. The results show that, since the matrix of the solid waste in a flow-through leaching test is always being degraded, the diffusivities continuously increased during the leaching period. The range of the diffusivities was 10E-8 to 10E-3 cm2/s, which corresponds to the case of liquid phase diffusion. But in the case of the flow-around (dynamic leaching) test, the range of the diffusivities was 10E-18 to 10E-9 cm2/s which was similar to solid phase diffusion, and the variation of the diffusivity with time was not regular.  相似文献   

15.
The present Spanish concept of a deep geological high level waste repository includes an engineered clay barrier around the canister. The clay presents a very high sorption capability for radionuclides and a very small hydraulic conductivity, so that the migration process of solutes is limited by sorption and diffusion processes. Therefore, diffusion and distribution coefficients in compacted bentonite (i.e. in "realistic" liquid to solid ratio conditions) are the main parameters that have to be obtained in order to characterise solute transport that could be produced after the canister breakdown. Through-Diffusion (TD) and In-Diffusion (ID) experiments with HTO, Sr, Cs and Se were carried out using compacted FEBEX bentonite, which is the reference material for the Spanish concept of radioactive waste disposal. Experiments were interpreted by means of available analytical solutions that allow the estimation of diffusion coefficients and, in some cases, distribution coefficients. Analytical solutions are simple to use, but rely on hypotheses that do not hold in all the experiments. These experiments were interpreted also using an automatic parameter estimation code that overcomes the limitations of analytical solutions. Numerical interpretation allows the simultaneous estimation of porosity, diffusion and distribution coefficients, accounts for the role of porous sinters and time-varying boundary concentrations, and can use different types of raw concentration data.  相似文献   

16.
The chemical composition of throughfall and canopy leaching, as well as the acid neutralizing capacity and alkalinity depended on the age of Norway spruce (Picea abies Karst) stands and season of the year. A higher amount of sulphur and strong acids was deposited to the soil in the older age classes. Concentrations of SO(4)(2)(-), K(+), H(+), Mn(2+), Fe(2+) and Zn(2+) in throughfall were higher than in bulk precipitation in any season. This suggests that these ions were washed out or washed from the surface of needles and/or barks. The other ions NO(3)(-), NH(4)(+), Ca(2+) and Mg(2+) were retained by the canopy, in particular Ca(2+) and Mg(2+) during the growing season in young stands. Principal component analysis identified five factors responsible for the data structure and suggested the major anthropogenic emission sources were acidic emission (SO(4)(2)(-)+NO(3)(-)), heavy metals-dust particles (Fe(2+)+Mn(2+)+Zn(2+)), ammonium (NH(4)(+)) and H(+), while the natural-origin emission was mineral dust (Na(+)+K(+)+Ca(2+)+Mg(2+)).  相似文献   

17.

Purpose

The purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry.

Methods

Six different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent.

Results

The biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin?CRadushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents.

Conclusion

The biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.  相似文献   

18.
Experiments were conducted at the Asp? Hard Rock Laboratory in order to improve the understanding of radionuclide retention properties of fractured crystalline bedrock in the 10-100 m scale (TRUE Block Scale Project, jointly funded by ANDRA, ENRESA, Nirex, JNC, Posiva and SKB). A series of tracer experiments were performed using sorbing tracers in three different flow paths. The different flow paths had Euclidian lengths of 14, 17 and 33 m, respectively, and one to three water conducting structures. Four tests were performed using different cocktails made up of radioactive sorbing tracers (22,24Na+, 42K+, 47Ca2+, 85Sr2+, 83,86Rb+, 131,133Ba2+ and 134,137Cs+). For each tracer injection, the breakthrough of sorbing tracers was compared to the breakthrough of a conservative tracer, 82Br-, 131I-, HTO and 186ReO4-, respectively. In the two longer flow paths, no breakthrough of 83Rb+ and 137Cs+ was observed after 8 months of pumping. Selected tracer tests were subject to basic modelling in which a one-dimensional (1D) advection-dispersion model, including surface sorption, and an unlimited matrix diffusion were used for the interpretation of the results. The results of the modelling indicated that there is a slightly higher mass transfer into a highly porous material in the block-scale experiment compared with in situ experiments performed over shorter distances and significantly higher than what would have been expected from laboratory data obtained from studies of the interactions in nonaltered intact rock.  相似文献   

19.
Chen S  Liu Y 《Chemosphere》2007,67(5):1010-1017
In this paper, the photocatalytic degradation of glyphosate selected as the deputy of organic pollutant in aqueous solution with TiO(2) powder as a photocatalyst has been studied. The effects of various parameters, such as the amount of the photocatalyst, illumination time, initial pH value, electron acceptors, metal ions, and anions on the photocatalytic degradation of glyphosate were investigated. From the studies, the best condition for the effect of the parameters on the photocatalytic degradation of glyphosate was obtained. The results show that the optimum amount of the photocatalyst used is 6.0 g l(-1) for the photocatalytic reactions. The photodegradation efficiency of glyphosate increases with the increase of the illumination time. With the addition of Fe(3+), Cu(2+), H(2)O(2), K(2)S(2)O(8) or KBrO(3), the photocatalytic degradation of glyphosate is accelerated. However, with the addition of Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Co(2+) and Ni(2+), or with the addition of trace amounts of Cl(-), Br(-), SO(4)(2-), there are no obvious effects on the reactions. Acidic or alkaline mediums are favorable for the photocatalytic degradation of glyphosate. The possible roles of the additives on the reactions and the possible mechanisms of effect were discussed.  相似文献   

20.
Various construction materials are under consideration for nuclear waste repositories. Two important materials are concrete and bentonite clay, which will act as mechanical barriers and prevent convective water flow. These barriers will also retard transport (diffusion controlled) of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid.An important issue is the possible change of the initial sodium bentonite into the calcium form due to interaction with calcium from the concrete. The initial leaching of concrete was studied using radioactive spiked concrete in contact with compacted bentonite.Measurement were made of the diffusion of Cs, Am and Pu into 5 different types of concrete in contact with pore water. The diffusivity measured for Cs agrees reasonably well with data found in the literature. No movement could be measured for Am and Pu (< 0.2 mm), even though the contact times were extremely long (2.5 and 5 yr, respectively). The diffusion of Na, Ca and Cs from concrete into bentonite was also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号