首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane-oxidizing bacteria (methanotrophs) in the soil are a unique group of methylotrophic bacteria that utilize methane (CH4) as their sole source of carbon and energy which limit the flux of methane to the atmosphere from soils and consume atmospheric methane. A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of methanotrophs and on methane flux in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha?1 and animal urine at 300 and 600 kg N ha?1. DCD was applied at 10 kg ha?1. The results showed that both the DNA and selected mRNA copy numbers of the methanotroph pmoA gene were not affected by the application of urea, urine or DCD. The methanotroph DNA and mRNA pmoA gene copy numbers were low in this soil, below 7.13?×?103 g?1 soil and 3.75?×?103 μg?1 RNA, respectively. Daily CH4 flux varied slightly among different treatments during the experimental period, ranging from ?12.89 g CH4 ha?1 day?1 to ?0.83 g CH4 ha?1 day?1, but no significant treatment effect was found. This study suggests that the application of urea fertilizer, animal urine returns and the use of the nitrification inhibitor DCD do not significantly affect soil methanotroph abundance or daily CH4 fluxes in grazed grassland soils.  相似文献   

2.
The aim of this study was to develop techniques to evaluate soil phosphorus (P) sorption capacity (PSC) and determine critical soil P levels to predict P loss potential for calcareous soils. Seventy-five soils mostly from Northern China were analyzed for soil P using four extraction methods (water, Pw; carbonate, POls; ammonium oxalate, Pox; and Mehlich 3, PM3) as well as PSC derived from single-point (PSC150) and multipoint sorption (S t) isotherms. Strong correlation was found between PSC150 and S t (r 2=0.89, p<0.001). The sum of αCaM3 and βMgM3 as an index of PSC (PSC(CaM3 + MgM3)) was most closely related to the maximum amount of P sorbed (S max) as given by the sum of S t and soil initial P setting α=0.039 and β=0.462 (r 2=0.80, p<0.001). The degree of P saturation (DPS) was thereafter calculated from PSC(CaM3 + MgM3) (DPS(CaM3 + MgM3)), to which Olsen P (POls) was significantly correlated (r 2=0.82, p<0.001). In a split-line regression from Pw against DPS(CaM3 + MgM3) (r 2=0.87, p<0.05), a change point was identified at 28.1% DPS(CaM3 + MgM3), which was equivalent to 49.2 mg kg?1 POls and corresponded to a Pw concentration of 8.8 mg kg?1. After the change point, a sharp increase in Pw was observed. Our results reveal a new approach to approximating DPS from CaM3 and MgM3 for calcareous soils without the need to generate a S max. We conclude that in the absence of an environmental soil test criteria for P, the DPS(CaM3 + MgM3) and POls could be used to predict P loss potential from calcareous soils.  相似文献   

3.
The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha?1) and N rates (90, 120, and 150 kg ha?1) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha?1), and 97% with higher N application (150 kg ha?1) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha?1 with 150 kg N ha?1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2 = 0.99 in both years), PAR (R 2 = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2 = 0.97 in 2012 and 0.91 in 2013), AY (R 2 = 0.95 in both years), RUE for TDM (RUETDM) (R 2 = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUEAY) (R 2 = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2 = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2 = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of sunflower. High temperature during the flowering stage in 2013 shortened the crop maturity duration, which reduced the LAI, leaf area duration (LAD), crop growth rate (CGR), TDM, AY, Fi, Sa, and RUE of sunflower. Our results clearly revealed that RUE was enhanced as plant population and N application rates were increased and biomass assimilation in semi-arid environments varied with radiation capture capacity of sunflower.  相似文献   

4.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N‐viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co‐compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot? 1 for each amendment (equivalent to 50 t ha? 1 of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3‐N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3‐N and inorganic P concentration significantly compared with the non‐legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3 ? could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co‐compost and biosolids, but decreased by coal ash and N‐viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3‐N to increase by about 7 fold, and that of inorganic P by about 23% over the non‐legume. Regarding the metals, biosolids, N‐viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co‐compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   

5.
Assessing mitigation of phosphorus (P) leaching from subsurface drainage systems is challenging due to high spatial and temporal variation in leaching. Mean measured total P leaching from a clayey soil in an eight-year study period (four replicates per treatment) was (kg ha?1 year?1): 1.21 from shallow autumn tillage (ShT), 0.84 from unfertilised fallow (UF), 0.81 from conventional autumn ploughing (CT) and 0.57 from structure liming (SL–CT). Treatment was not significant using Richards–Baker flow index or a distance factor as covariate (p = 0.084 and 0.057). A tendency for lower leaching was obtained comparing SL-CT with ShT (p adjusted = 0.060 and 0.009 respectively). A combination of measures adapted to drainage conditions and clay content in different parts of the field is proposed since P leaching was approximately halved from an adjacent field (4.3 ha) in a three-year post-period compared with a three-year pre-period for structure liming the entire field and drainage system renovation plus structure lime drain backfilling.  相似文献   

6.
Crops, particularly in the Northeast region of Mexico, have to cope with increasing soil salinization due to irrigation. Chloride (Cl?) concentration has been strongly related to enhance cadmium (Cd) uptake by plants due to increased solubility in the soil solution. The effect of irrigation with slightly saline water from a local well was evaluated in this work on the accumulation and translocation of Cd in Swiss chard (Beta vulgaris L.) grown in soil historically amended with stabilized sewage sludge under a regime of phosphorus and zinc fertilization. A factorial pot experiment was conducted with two phosphate fertilizer levels (PF, 0 and 80 kg ha?1 dry soil, respectively), two Zn levels (0 and 7 kg ha?1 dry soil), and two sources of water for irrigation deionized water (DW) and slightly saline well water (WW) from an agricultural site. Additionally, a human risk assessment for Cd ingestion from plants was assessed. Results showed that Cl? salinity in the WW effectively mobilized soil Cd and increased its phytoavailability. A higher level of Cd was found in roots (46.41 mg kg?1) compared to shoots (10.75 mg kg?1). Although the total content of Cd in the edible parts of the Swiss chard irrigated with WW exceeded permissible recommended consumption limit, bioavailable cadmium in the aboveground parts of the plant in relation to the total cadmium content was in the range from 8 to 32 %. Therefore, human health risks might be overestimated when the total concentration is taken into account.  相似文献   

7.
Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha?1 year?1. Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future.  相似文献   

8.
Studying the toxic risk of pesticide exposure to ladybird beetles is important from an agronomical and ecological perspective since larval and adult ladybirds are dominant predators of herbivorous pest insects (e.g., aphids) in various crops in China. This article mainly deals with the long-term effects of a single application of the insect growth regulator hexaflumuron on Coccinella septempunctata. A 72-h and a 33-day toxicity test with hexaflumuron (single application) were performed, starting with the second instar larvae of C. septempunctata. Exposure doses in the long-term experiment were based on the estimated 72-h acute LR50 (application rate causing 50 % mortality) value of 304 g active ingredient (a.i.) ha?1 for second instar larvae of C. septempunctata. The long-term test used five hexaflumuron doses as treatment levels (1/50, 1/100, 1/200, 1/400, and 1/800 of the 72-h acute LR50), as well as a solvent control and blank control treatment. The measurement endpoints used to calculate no observed effect application rates (NOERs) included development time, hatching, pupation, adult emergence, survival, and number of eggs produced. Analyzing the experimental data with one-way analysis of variance showed that the single hexaflumuron application had significant effects on C. septempunctata endpoints in the 33-day test, including effects on development duration (NOER 1.52 g a.i. ha?1), hatching (NOER 3.04 g a.i. ha?1), pupation (NOER 3.04 g a.i. ha?1), and survival (NOER 1.52 g a.i. ha?1). These NOERs are lower than the reported maximum field application rate of hexaflumuron (135 g a.i. ha?1) in cotton cultivation, suggesting potential risks to beneficial arthropods.  相似文献   

9.
This paper presents the results of wet precipitation chemistry from September 2009 to August 2010 at a high-altitude forest site in the southeastern Tibetan Plateau (TP). The alkaline wet precipitation, with pH ranging from 6.25 to 9.27, was attributed to the neutralization of dust in the atmosphere. Wet deposition levels of major ions and trace elements were generally comparable with other alpine and remote sites around the world. However, the apparently greater contents/fluxes of trace elements (V, Co, Ni, Cu, Zn, and Cd), compared to those in central and southern TP and pristine sites of the world, reflected potential anthropogenic disturbances. The almost equal mole concentrations and perfect linear relationships of Na+ and Cl? suggested significant sea-salts sources, and was confirmed by calculating diverse sources. Crust mineral dust was responsible for a minor fraction of the chemical components (less than 15 %) except Al and Fe, while most species (without Na+, Cl?, Mg2+, Al, and Fe) arose mainly from anthropogenic activities. High values of as-K+ (anthropogenic sources potassium), as-SO4 2?, and as-NO3 ? observed in winter and spring demonstrated the great effects of biomass burning and fossil fuel combustion in these seasons, which coincided with haze layer outburst in South Asia. Atmospheric circulation exerted significant influences on the chemical components in wet deposition. Marine air masses mainly originating from the Bay of Bengal provided a large number of sea salts to the chemical composition, while trace elements during summer monsoon seasons were greatly affected by industrial emissions from South Asia. The flux of wet deposition was 1.12 kg?N?ha?1?year?1 for NH4 +–N and 0.29 kg?N?ha?1?year?1 for NO3 ?–N. The total atmospheric deposition of N was estimated to be 6.41 kg?N?ha?1?year?1, implying potential impacts on the alpine ecosystem in this region.  相似文献   

10.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

11.
The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg?kg?1). In this study, the effect of compost at 20 t?ha?1 (C20) and at 60 t?ha?1 (C60), manure at 10 t?ha?1 (M10) and at 30 t?ha?1 (M30), and chemical fertilizers (NPK) on Zn fate in a soil–plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.  相似文献   

12.
Carrot (Daucus carota L.) is a vegetable crop that is grown throughout the year across various regions of Brazil in rotation or in succession to other cultures. Herbicide residual effect has emerged as a concern, because of the possibility of carryover. Thus, the objective of this study was to evaluate the effect of tembotrione and atrazine residues – in mixture and isolated – on carrot planted in succession to corn. The experiment was designed in randomized blocks with five replications. Treatments consisted of tembotrione (50.4 g ha?1), tembotrione (100.8 g ha?1), tembotrione + atrazine (50.4 g ha?1+ 2 L ha?1), tembotrione + atrazine (100.8 g ha?1+ 2 L ha?1), and atrazine (2.00 L ha?1) applied eight months before carrot seeding, plus a control treatment with no herbicide application. Investigated variables were shoot dry mass, productivity, and classification of carrot roots. The presence of atrazine and tembotrione decreased dry mass in the area, and only tembotrione reduced total root productivity. Thus, there is a carryover effect to tembotrione application that reduces the dry matter accumulation of shoot and total productivity, and an atrazine + tembotrione (100.8 g ha?1) mixture reduces the total productivity after application of these herbicides to soil.  相似文献   

13.
Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha?1 month?1. In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p?=?0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.  相似文献   

14.
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha?1) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5–91.2 % and the concentrations of Cd and Pb in brown rice by 20.9–50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha?1) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.  相似文献   

15.
A greenhouse experiment was carried out to investigate the single effect of benzo[a]pyrene (B[a]P) or chromium (Cr) and the joint effect of Cr–B[a]P on the growth of Zea mays, its uptake and accumulation of Cr, and the dissipation of B[a]P over 60 days. Results showed that single or joint contamination of Cr and B[a]P did not affect the plant growth relative to control treatments. However, the occurrence of B[a]P had an enhancing effect on the accumulation and translocation of Cr. The accumulation of Cr in shoot of plant significantly increased by?≥?79 % in 50 mg kg?1 Cr–B[a]P (1, 5, and 10 mg kg?1) treatments and by?≥?86 % in 100 mg kg?1 Cr–B[a]P (1, 5, and 10 mg kg?1) treatments relative to control treatments. The presence of plants did not enhance the dissipation of B[a]P in lower (1and 5 mg kg?1) B[a]P contaminated soils; however, over 60 days of planting Z. mays seemed to enhance the dissipation of B[a]P by over 60 % in 10 mg kg?1 single contaminated soil and by 28 to 41 % in 10 mg kg?1B[a]P co-contaminated soil. This suggests that Z. mays might be a useful plant for the remediation of Cr–B[a]P co-contaminated soil.  相似文献   

16.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

17.
Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH?=?8.2), moderate organic content (DOC?=?152 mg C L?1, COD?=?684 mg O2 L?1) and low-moderate biodegradability (40 % after 28 days in Zahn–Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe2+ L?1, leading to 98.5 % decolorization and 85.5 % mineralization after less than 0.1 and 5.8 kJUV L?1, respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L?1 (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L?1, consuming 7.5 mM hydrogen peroxide, resulting in 58.4 % of mineralization $ \left({t}_{30\mathrm{W}}=3.2\ \min; \overline{T}=30.7\ {}^{\circ}\mathrm{C};\overline{\mathrm{pH}}=2.80;{\overline{\mathrm{UV}}}_{G,n}={13\ \mathrm{W}\ \mathrm{m}}^{-2}\right). $   相似文献   

18.
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km2) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ?mm?ha?1?h?1?a?1. With increasing altitudes, R a rises up to maximum 7,547 MJ?mm ha?1?h?1 a?1 at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a?=?1,986 MJ?mm?ha?1?h?1?a?1. The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.  相似文献   

19.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

20.
To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole?+?20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha?1). The residual concentrations were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0–10.8 and 9.5–21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4–9.8 and 4.3–11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha?1 and 108 g a.i. ha?1, respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg?1 in maize, between 0.01 and 0.31 mg kg?1 in maize straw, and between 0.03 and 1.91 mg kg?1 in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01–0.03 mg kg?1, respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg?1 after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha?1 was recommended, as it can be considered safe to human beings and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号