首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Light exposure of aqueous suspensions of prednisolone and dexamethasone causes their partial phototransformation. The photoproducts, isolated by chromatographic techniques, have been identified by spectroscopic means. Prednisolone, dexamethasone and their photoproducts have been tested to evaluate their acute and chronic toxic effects on some freshwater chain organisms. The rotifer Brachionus calyciflorus and the crustaceans Thamnocephalus platyurus and Daphnia magna were chosen to perform acute toxicity tests, while the alga Pseudokircheneriella subcapitata (formerly known as Selenastrum capricornutum) and the crustacean Ceriodaphnia dubia to perform chronic tests. The photochemical derivatives are more toxic than the parent compounds. Generally low acute toxicity was found. Chronic exposure to this class of pharmaceuticals caused inhibition of growth population on the freshwater crustacean C. dubia while the alga P. subcapitata seems to be less affected by the presence of these drugs.  相似文献   

2.
Fluoroquinolones like difloxacin (DIF) and sarafloxacin (SARA) are adsorbed in soil and enter the aquatic environment wherein they are subjected to photolytic degradation. To evaluate the fate of DIF and SARA, their photolysis was performed in water under stimulated natural sunlight conditions. DIF primarily degrades to SARA. On prolonged photodegradation, seven photoproducts were elucidated by HR-LC-MS/MS, three of which were entirely novel. The residual anti-bacterial activities of DIF, SARA and their photoproducts were studied against a group of pathogenic strains. DIF and SARA revealed potency against both Gram-positive and -negative bacteria. The photoproducts also exhibited varying degrees of efficacies against the tested bacteria. Even without isolating the individual photoproducts, their impact on the aquatic environment could be assessed. Therefore, the present results call for prudence in estimating the fate of these compounds in water and in avoiding emergence of resistance in bacteria caused by the photoproducts of DIF and SARA.  相似文献   

3.
The degradation photoproducts of the fungicide fenarimol obtained from irradiation of aqueous solutions with sunlight were characterised. The photoproducts resulting from samples with different exposure times were extracted and separated using chromatographic techniques. Seven main photoproducts were detected using high performance liquid chromatography with a photodiode array detector, gas chromatography with mass spectrometry detector and Fourier transform infrared spectroscopy. Structures are suggested for possible photoproducts based on the characterisation results, minimum energy geometry of the parent compound, and the mass spectral behaviour of fenarimol. These correspond to the compounds with m/z 328 (three structural isomers (a), (b) and (c)), m/z 294 (two structural isomers (a) and (b)), m/z 292, 278 and 190. Of the various major products detected, the isomer 328(a) is seen to be particularly unstable under the action of sunlight. The most stable photoproducts are found to be those with m/z 294(a), 278 and 190. However, upon prolonged solar irradiation all of these break down to produce polar, low molecular weight compounds. Comparison with our own and other results on fenarimol photolysis indicate significant solvent effects on the process. The combination of these structural characterisation results and previous data from spectroscopic and photodegradation kinetics studies allows us to suggest some possible mechanisms for the photodegradation of fenarimol under sunlight.  相似文献   

4.
Photoexcitation of complexes between cyclophane 1 and 1- or 2-chloronaphthalene in aqueous solution leads to rapid dechlorination of the guest, a reaction driven by electron transfer from host to excited guest. The main photoproducts contain a naphthyl group covalently attached to the host framework. The results may lead to new approaches for remediating water contaminated with chlorinated aromatic compounds.  相似文献   

5.
The known advantages of solid-phase microextraction as a simple, one-step, rapid and solvent free extraction technique are exploited to study the photodegradation kinetics of polychlorinated biphenyls "on-fibre". The obtained results show the possibilities of this new approach not only to monitor the photolysis pathways of such compounds but to determine the photoproducts produced at different irradiation times and/or wavelengths. Photoproducts of PCB decomposition were less chlorinated biphenyls, among them some coplanar congeners have been found, which is important from a toxicological point of view.  相似文献   

6.
Pathway of anthracene modification under simulated solar radiation   总被引:8,自引:0,他引:8  
Mallakin A  Dixon DG  Greenberg BM 《Chemosphere》2000,40(12):1435-1441
Exposure of polycyclic aromatic hydrocarbons (PAHs) to sunlight results in rapid structural photomodification generally via oxidation reactions. These PAH modification products are in many cases more toxic than their parent compounds. In this study, anthracene (ANT), a rapidly photooxidized PAH, was irradiated with simulated solar radiation (SSR, 100 μmol m−2 s−1) in aqueous solution to examine the photomodification pathway. The photoproducts formed were identified by HPLC. The ANT product profile after 9 h in SSR was very complex, with more than 20 compounds detected. The photoproducts formed were anthraquinones, benzoic acids, benzaldehydes and phenols showing the process to be oxidative in nature. Some of the anthraquinones were themselves subject to photooxidation, and were thus intermediates in the product pathway. The kinetics of ANT photooxidation revealed a pseudo first-order reaction with a half-life of 2 h under the SSR source used. The kinetics of product formation allowed deduction of a probable photomodification pathway. This study indicates that PAH photooxidation products are likely to exist as complex, dynamically changing mixtures in PAH contaminated aquatic environments.  相似文献   

7.
Goal, Scope and Background The use of polybrominated diphenyl ethers (PBDEs) as flame retardants increases the risk for emissions of other brominated compounds, such as polybrominated dibenzodioxins (PBDDs) and dibenzofurans (PBDFs). The large homology in structure of PBDD/Fs and mechanism of toxic action, i.e. the capacity to activate the Ah receptor (AhR) pathway, compared to their well-studied chlorinated analogues, justifies a raised concern to study the environmental levels and fate of these compounds. Decabromodiphenyl ether (decaBDE) is the most widely used PBDE today. Studies on photolytic debromination of decaBDE in organic solvents have shown debromination of decaBDE, as well as formation of PBDFs. However, little is known about the transformation mechanisms and there are only scarce data on photoproducts and PBDE transformation in environmentally relevant matrices. In this study, mechanism-specific dioxin bioassays were used to study photolytic formation of AhR agonists in toluene solutions of decaBDE. In addition, the influence of irradiation time and UV-light wavelength on the formation was studied. PBDE congener patterns and presence of PBDD/Fs were analysed. Further, AhR agonists were analysed in agricultural soils contaminated with PBDEs. Soils were also exposed to UV-light to study changes in AhR agonist levels. Methods Toluene solutions of decaBDE were irradiated using three different spectra of UV-light, simulating UV-A (320-400 nm), UV-AB (280-400 nm), and UV-ABC (250-400 nm). Additionally, decaBDE solutions were exposed to narrow wavelength intervals (10 nm bandwidth) with the central wavelengths 280, 290, 300, 310, 320, 330, 340, 350, 360 nm. AhR agonists in decaBDE solutions were analysed with two different bioassays, the chick embryo liver-cell assay for dioxins (Celcad) and the dioxin responsive, chemically activated luciferase expression assay (DR-Calux). Also, the decaBDE solutions were analysed with LRGC-LRMS to obtain PBDE congener patterns for breakdown of decaBDE, and with HRGC-HRMS, for presence of PBDD/Fs. Four soils were exposed to UV-AB light, under both dry and moist conditions. Levels of AhR agonists in soil extract fractions, before and after UV-exposure, were analysed with the DR-Calux. Results and Discussion Significant levels of photoproducts able to activate the AhR pathway, up to 31 ng bio-TEQ/ml, were formed in UV-exposed decaBDE solutions. The transformation yield of decaBDE into AhR agonists was estimated to be at the 0.1%-level, on a molar basis. The net formation was highly dependent on wavelength, with the sample irradiated at 330 nm showing the highest level of dioxin-like activity. No activity was detected in controls. PBDE analysis confirmed decaBDE degradation and a clear time-dependent pattern for debromination of PBDE congeners. AhR agonist effect in the recalcitrant fractions of the soils corresponded to the levels of chemically derived TEQs, based only on chlorinated dioxin-like compounds in an earlier study. It was concluded that no significant levels of other AhR agonists, e.g. PBDFs, were accumulated in the soil. UV-light caused changes in AhR-mediated activity in the more polar and less persistent fractions of the soils, but it is not known which compounds are responsible for this. Recommendations and Perspective . The laboratory experiments in this study show that high levels of AhR agonists can be formed as photoproducts of decaBDE and it is important to elucidate if and under which conditions this might occur in nature. However, soil analysis indicates that photoproducts of PBDE do not contribute to the accumulated levels of persistent dioxin-like compounds in agricultural soil. Still, more data is needed to fully estimate the environmental importance of PBDE photolysis and occurrence of its photoproducts in other environmental compartments. Analysis with dioxin bioassays enabled us to gather information about photoproducts formed from decaBDE even though the exact identities of these compounds were not known. Conclusion Bioassays are valuable for studying environmental transformation processes like this, where chemical analysis and subsequent toxicological evaluation requires available standard compounds and information on toxicological potency. The use of bioassays allows a rapid evaluation of toxicological relevance.  相似文献   

8.
Four organophosphorus compounds: azinphos-methyl, chlorpyrifos, malathion and malaoxon in aqueous solution were degraded by using a 125 W xenon parabolic lamp. Gas chromatography-mass spectrometry (GC-MS) was used to monitor the disappearance of starting compounds and formation of degradation products as a function of time. AChE-thermal lens spectrometric bioassay was employed to assess the toxicity of photoproducts. The photodegradation kinetics can be described by a first-order degradation curve C=C0e(-kt), resulting in the following half lives: 2.5min for azinphos-methyl, 11.6 min for malathion, 13.3 min for chlorpyrifos and 45.5 min for malaoxon, under given experimental conditions. During the photoprocess several intermediates were identified by GC-MS suggesting the pathway of OP degradation. The oxidation of chlorpyrifos results in the formation of chlorpyrifos-oxon as the main identified photoproduct. In case of malathion and azinphos-methyl the corresponding oxon analogues were not detected. The formation of diethyl (dimethoxy-phosphoryl) succinate in traces was observed during photodegradation of malaoxon and malathion. Several other photoproducts including trimethyl phosphate esters, which are known to be AChE inhibitors and 1,2,3-benzotriazin-4(3H)-one as a member of triazine compounds were identified in photodegraded samples of malathion, malaoxon, and azinphos-methyl. Based on this, two main degradation pathways can be proposed, both result of the (P-S-C) bond cleavage taking place at the side of leaving group. The enhanced inhibition of AChE observed with the TLS bioassay during the initial 30 min of photodegradation in case of all four OPs, confirmed the formation of toxic intermediates. With the continuation of irradiation, the AChE inhibition decreased, indicating that the formed toxic compounds were further degraded to AChE non-inhibiting products. The presented results demonstrate the importance of toxicity monitoring during the degradation of OPs in processes of waste water remediation, before releasing it into the environment.  相似文献   

9.
Many drugs such as beta-blockers have been shown to occur in aquatic environments. Even if adequate ecotoxicity data are not available, it is of primary importance to get informations about their fate in environmental waters, particularly about their photofate in sewage treatment plant effluents (STP). The main difficulties when studying pharmaceutical photochemical behaviour in environmental waters, are linked to the very low environmentally relevant concentrations (ng L(-1) to microg L(-1)) which can generate problems in terms of analytical sensitivity. Moreover, the complexity of environmental matrices can modify micropollutants degradation kinetics. The photodegradation of beta-blockers has been compared at two concentration levels (10 microg L(-1) and 10 mg L(-1)) and in two different matrices (pure water and STP effluent). It has been shown that the concentration does not influence beta-blockers degradation pathways, thus allowing the identification of degradation compounds using the 10 mg L(-1) solutions. Although environmental waters speed up the degradation process, the same photoproducts were appeared in both matrices. Using LC-MS/MS, hydroxyl radical additions have been identified as an important degradation pathway for especially pindolol, propranolol and timolol, leading to several positional isomers, corresponding to mono-, di- or tri-hydroxylations. Kinetics of appearance/disappearance of these photoproducts have been studied in STP effluents.  相似文献   

10.
Halogenated phenylurea herbicides are not very toxic by themselves to animals, but their exposure to UV light may significantly increase the toxicity of their solutions. Absorption of light may indeed induce a phototransformation of the herbicide with a possible formation of more toxic intermediate photoproducts. Fortunately in environmental conditions photolysis is usually slow and photoproducts do not accumulate appreciably. Microtox was used for the evaluation of the toxicity of the crude irradiated solutions of some phenylurea herbicides. The sharp initial increase of toxicity shown by metobromuron solutions is mainly due to intermediate photoproducts which rapidly disappear. In the case of diuron and metoxuron toxicity is due to minor photoproducts and it does not disappear so rapidly. Hence the decrease of herbicide concentration is not necessarily associated to a lower toxicity of the solution.  相似文献   

11.
Carbofuran is a toxic carbamate pesticide, and its use has increased in recent years. While marketing information indicates stability in different chemical media, carbofuran exhibits relative photolability. The aim of this research was to decompose carbofuran and to identify the photoproducts achieved when two different doped titania photocatalysts were employed under UV irradiation. The iron-doped TiO2 materials were obtained (a) via a hydrothermal method and (b) by an ultrasound-assisted sol–gel method. The precursors were TiOSO4?xH2O and Fe3(NO3)·9H2O. X-ray studies confirmed that the anatase phase of the iron-doped TiO2 resulted from the two preparation methods. The photocatalytic performance of the prepared materials was monitored by LC/ESI-QTOF-MS, enabling the identification of photoproducts: oxo-carbamates, hydroxylated benzofuranes, a carboxamide, and one amine. By using the iron-doped TiO2 materials, 2,2-dimethyl-2,3-dihydrobenzofuran-3,7-diol was the most abundant photoproduct, and N,2,2-trimethyl-2,3-dihydrobenzofuran-7-amine was the only compound that had not been previously reported in the photolysis and photocatalysis of carbofuran. The product 3-hydroxy carbofuran, a cholinesterase inhibitor, was quantified and was found to be transformed into compounds that lack this inhibitive property.  相似文献   

12.
Malouki MA  Lavédrine B  Richard C 《Chemosphere》2005,60(11):1523-1529
The influence of nitrate and nitrite ions on the degradation of methabenzthiazuron upon irradiation using artificial solar light has been investigated. The rate of degradation of methabenzthiazuron (1 microM) was accelerated by NO3- (0.1 mM) by a factor of 10. The irradiation of methabenzthiazuron (0.1 mM) in the presence of NO3- (1 mM) or NO2- (0.1 mM) yielded numerous intermediary photoproducts. Mineralization was achieved after prolonged exposure. Some were identified with the help of LC-ESI-MS and flow injection APCI-MS techniques. Both oxidations of the aromatic ring and of the urea chain were observed. The former started by hydroxylation of the ring. Further oxidation of the ring led to cleavage of the benzenic ring with formation of dialdehydic, diacidic and anhydric compounds. Complete removal of the lateral urea chain took place subsequently to demethylation of the terminal methyl group and loss of the CO-NH2 group. Nitration was a minor process. This work shows that the photodegradation of methabenzthiazuron in the presence of nitrate or nitrite ions is highly non-specific.  相似文献   

13.
Light-induced degradation of metsulfuron-methyl in water   总被引:1,自引:0,他引:1  
Caselli M 《Chemosphere》2005,59(8):1137-1143
Photodegradation of metsulfuron-methyl, a sulfonylurea herbicide, has been investigated in aqueous solution at different pH and excitation wavelengths. The efficiency of the process has been evaluated through quantum yield determinations. The identification of the photoproducts indicates that the major photochemical pathway is initiated by C-S bond dissociation followed by involvement of water to yield the main final products; the behaviour in water is shown to differ markedly from that in an organic environment.  相似文献   

14.
Five substituted biphenyl photoproducts were identified from the photolysis of 3-(4-chlorophenyl)-1, 1-dimethylurea (monuron) under varying solution conditions. These photoproducts contained functional groups that conferred phytotoxic properties to phenylurea herbicides. Therefore, a study was conducted to determine if these biphenyl photoproducts at 1, 10 and 100 μM concentrations could exhibit phytotoxic effects using the Hill reaction as the biological assay. The results show that virtually no inhibitory effects were observed from the bis-(N′,N′-dimethylureido)biphyenyl photoproducts at any of the above concentrations.  相似文献   

15.
Abu-Qare AW  Duncan HJ 《Chemosphere》2002,46(8):1183-1189
Photodegradation of the herbicide EPTC (S-ethyl-N, N-dipropylthiocarbamate), and the safener dichlormid (2,2-dichloro-N, N-diallylacetamide) has been examined in methanol and in water solutions. Irradiation of EPTC and dichlormid with UV light at 254 nm caused rapid degradation in both media. Remarkable and gradual changes in color of EPTC irradiated solution was observed from clear to yellow then to intense orange. EPTC half-life of elimination in water was 14.0, and 18.5 min, and in methanol 37.2 and 32.2 min, when irradiated with and without dichlormid, respectively. There was significant difference between rate of EPTC degradation in water and methanol in the presence or in the absence of dichlormid. Negligible degradation of EPTC or dichlormid at > 290 nm was observed. Photoproducts were separated and identified using GC or/and thin-layer chromatography then identified using mass spectrometry. It appeared that some products have high molecular weight that formed as a result of dimerization. This is possibly a result of the coupling of radicals that formed through EPTC degradation. The cleavage of C-S and C-N bonds accounted for the formation of these radicals. Gradual dealkylation of the acid chains of EPTC has also occurred. EPTC-sulfoxide, EPTC-sulfone, Propylamine and dipropylamine were detected as photoproducts of EPTC at 254 nm. Dichlormid pathways of degradation at 254 nm were characterized as dechlorination, dealkylation, and hydrolysis both in water and methanol. The findings showed that dichlormid did not significantly affect EPTC photodegradation either at 254 nm or at > 290 nm. The biological/toxicological properties of the photoproducts need further study, particularly the dimer compounds.  相似文献   

16.
17.
In the present study, we aimed to evaluate the effect of UV-visible irradiation on the estrogenicity of an estrone aqueous solution by using chemical analysis associated with an in vitro bioassay and in silico analysis. An estrone aqueous solution was irradiated with an UV-visible high-pressure mercury lamp. By using the MELN in vitro cellular bioassay, based on the induction of a luciferase reporter gene upon the activation of the estrogen receptor by chemicals, we showed that the estrogenic potency of the solution increased after irradiation. High-performance liquid chromatography fractionation of the photolyzed solution followed by in vitro testing of fractions allowed the quantitation of the estrogenic potency of each fraction. Nine photoproducts were detected and characterized by liquid chromatography-mass spectrometry coupling. The observed estrogenic activity is mediated by mono- and multi-hydroxylated photoproducts; it is influenced by the position of hydroxyl groups on the steroidal skeleton. In addition, a structure-activity analysis of the hydroxylated photoproducts confirmed their ability to act as estrogen receptor ligands.  相似文献   

18.
Photochemical behaviour of carbendazim in aqueous solution   总被引:6,自引:0,他引:6  
To elucidate the photochemical behaviour of carbendazim (or MBC) in superficial waters, photolysis studies have been carried out in aqueous solutions at several pH using a UV light source (high pressure mercury arc lamp) or a solar light simulator (xenon arc lamp). The kinetics of photodecomposition of carbendazim was determined using HPLC-DAD and the identification of photoproducts was carried out with HPLC-MS (ESI negative and positive mode). According to the experimental results carbendazim is a rather stable molecule in the dark or in environmental conditions. The pH influence of the environmental medium on the photodegradation rate has been confirmed. The photochemical process can be considerably accelerated in alkaline solutions using HPK-quartz irradiation (quantum efficiency at pH 9 phi = 3.1 x 10(-3) degraded molecule per absorbed photon) while the photodegradation is not as efficient under a simulated sun irradiation (quantum efficiency in the suntest phi = 10(-4) at pH 7). Three photoproducts have been tentatively identified in pure water: 2-aminobenzimidazole, benzimidazole isocyanate and monocarbomethoxy-guanidine (issued from the cleavage of the benzimidazole ring). The last one seems very stable and could be accumulated in the environment.  相似文献   

19.
Brand N  Mailhot G  Bolte M 《Chemosphere》2000,40(4):395-401
The photoinduced degradation of an alcohol ethoxylate (AE) (Brij 30) by Fe(III) in aqueous solution has been investigated. The study was carried out with the major fraction of ethoxymers having an alkyl chain length of 12 carbon atoms and n ethoxy units E (C12En). The Fe(III) sensitised degradation of this fraction occurs efficiently at 365 nm. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of .OH radical formation. Formate ethoxylates were identified as photoproducts and shortening of the ethoxylated chain all along the degradation process was observed. The mechanism of Brij 30 degradation implies a major .OH radicals attack on the polyethoxylated chain. For prolonged irradiations, the total degradation of Brij 30 and of the photoproducts is obtained. Consequently, the degradation photoinduced by iron (III) could be an efficient method of AEs removal in water.  相似文献   

20.
Tetracycline photolysis in natural waters: loss of antibacterial activity   总被引:1,自引:0,他引:1  
Previous work has shown that tetracycline undergoes direct photolysis in the presence of sunlight, with the decomposition rate highly dependent on conditions such as water hardness and pH. The purpose of this study was to examine the potential long-term significance of photoproducts formed when tetracycline undergoes photodegradation under a range of environmentally relevant conditions. Tetracycline was photolyzed in nine different natural and artificial water samples using simulated sunlight. The pH values of the samples ranged from 5 to 9. Total hardness values (combined Ca2+ and Mg2+ concentrations) varied from 30 to 450 ppm. Assays based on growth inhibition of two bacterial strains, Escherichia coli DH5α and Vibrio fischeri, were used to determine the antibacterial activity of tetracycline’s photoproducts in these water samples. In all tested conditions, it was determined that the photoproducts retain no significant antibacterial activity; all observed growth inhibition was attributable to residual tetracycline. This suggests that tetracycline photoproducts formed under a wide range of pH and water hardness conditions will not contribute to the selection of antibiotic-resistant bacteria in environmental systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号