首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu2+ and Zn2+ from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu2+ and Zn2+ from a aqueous solution containing a 100 mg/l of Cu2+ and Zn2+, where 92.9 % Cu2+ and 58.3 % Zn2+ were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu2+ and Zn2+. A kinetics study indicated that removing Cu2+ and Zn2+ with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu2+and Zn2+ on bentonite and the degradation of Cu2+and Zn2+ by nZVI on the bentonite. However, Cu2+ removal by B-nZVI was reduced rather than adsorption, while Zn2+ removal was main adsorption. Finally, Cu2+, Zn2+, Ni2+, Pb2+ and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.  相似文献   

2.
The effect of seven heavy metals on the motility parameter of zebrafish sperm was tested in order to develop an in vitro toxicological test system as an alternative to live animal testing. In vitro test systems are currently preferred in ecotoxicology due to their practical and ethical advantages and fish sperm can be a suitable model. A number of studies had been carried out previously on this topic, but the described methods had not been standardized in numerous aspects (donor species, measured endpoint, etc.). In this study, heavy metals (mercury, arsenic, chromium, zinc, nickel, copper, cadmium) were used as reference toxicants with known toxicity to develop a standardized fish sperm in vitro assay. The tested concentrations were determined based on preliminary range finding tests. The endpoints were progressive motility (PMOT, %), curvilinear velocity (VCL, μm/s), and linearity (LIN, %) measured by a computer-assisted sperm analysis (CASA) system. According to our results, PMOT was the most sensitive of the three investigated parameters: dose-response curves were observed for each metal at relatively low concentrations. VCL values were less sensitive: higher concentrations were needed to observe changes. Of the three parameters, LIN was the least affected: dose-response relationship was observed only in the case of mercury (e.g., lowest observed effect concentration (LOEC) of Hg at 120 min: 1 mg/L for PMOT, 2.5 mg/L for VCL, 5 mg/L for LIN; LOEC of Cu at 120 min: 1 mg/L for PMOT, 5 mg/L for VCL, any for LIN). The order of toxicity as determined by PMOT was as follows: Hg2+?>?As3+?>?Cd2+?>?Cu2+?>?Zn2+?>?Cr3+?>?Ni2+. In conclusion, we found that PMOT of zebrafish sperm was an accurate and fast bioindicator of heavy metal load. Sperm analysis can be adopted to estimate the possible toxic effects of various chemicals in vitro. Future investigations should concentrate on the applicability of this assay to other contaminants (e.g., organic pollutants).  相似文献   

3.
复合纳米材料对土壤重金属离子吸持固化的模拟研究   总被引:1,自引:0,他引:1  
土壤中过量重金属离子可通过食物链和地表水系统危害人群健康。通过土柱淋溶模拟实验,研究了SiO2-Al2O3-Fe2O3等复合纳米材料对土壤溶液中Cu2+、Cd2+、Pb2+、Zn2+和Ni2+的吸持与固化特征。分别向重金属含量4倍于土壤二级标准(GB15618-1995)的土壤中添加0%、4%、6%和10%的复合纳米材料,分析不同深度土壤渗滤液以及土柱上栽培植物不同部位中重金属的含量。结果表明,碱性壤质土壤中重金属向下的迁移量很少;在含4%复合纳米材料土柱中,其吸持固化土壤溶液中63%的Cu、79%的Cd、68%的Pb、89%的Zn和76%的Ni;在含6%复合纳米材料土柱中,其吸持固化土壤溶液中82%的Cu、92%的Cd、76%的Pb、91%的Zn和88%的Ni;再增加土柱中复合纳米材料的含量,其吸持固化效果并不再显著增加。  相似文献   

4.
Nanocomposite hydrogels based on poly(methacrylamide-co-acrylic acid) and nano-sized montmorillonite were prepared by aqueous dispersion and in situ radical polymerization. Optimum sorption conditions were determined as a function of montmorillonite content, contact time, pH, and temperature. The equilibrium data of Cu2+ and Ni2+ conformed to the Freundlich and Langmuir isotherms in terms of relatively high regression values. The maximum monolayer adsorption capacity of the nanocomposite hydrogel (with 3 wt% montmorillonite content), as obtained from the Langmuir adsorption isotherm, was found to be 49.26 and 46.94 mg g?1 for Cu2+ and Ni2+, respectively, at contact time?=?60 min, pH?=?6.8, adsorbent dose?=?100 mg/ml, and temperature?=?318 K. Kinetic studies of single system indicated that the pseudo-second order is the best fit with a high correlation coefficient (R 2?=?0.97–0.99). The result of five times sequential adsorption–desorption cycle shows a good degree of desorption and a high adsorption efficiency.  相似文献   

5.
The current problem of excess impurities in industrial phosphoric acid (IPA) 54 % P2O5 makes phosphates industries look toward low-cost but efficient adsorbents. In the present study, iron-oxide-modified bentonite (Fe-PILB) was prepared and investigated as a possible adsorbent for the removal of organic matter (OM) like humic acid (HA), chromium (Cr(III)), and zinc (Zn(II)) from IPA aqueous solutions. These adsorbents were characterized using XRD, TEM, and BET. The adsorption of impurities is well described by the pseudo-second-order model. The results indicate that Fe-PILB has a good ability to resist co-existing anions and the low-pH condition of IPA and owns a relatively high-removal capacity of 80.42 and 25 % for OM, Cr(III), and Zn(II). The mechanism of adsorption may be described by the ligand and ion exchange that happened on the active sites. The selected order of adsorption OM?>?Cr3+?>?Zn2+ showed the importance of the competitive phenomenon onto bentonite materials’ pore adsorption. For the adsorption of OM at the low pH of IPA, H-bond complexation was the dominant mechanism. From the adsorption of heavy metals and OM complex compounds contained in IPA 54 % on Fe-PILB, the bridging of humic acid between bentonite and heavy metals (Zn(II) or Cr(III)) is proposed as the dominant adsorption mechanism (bentonite-HA-Me). Overall, the results obtained in this study indicate Fe-pillared bentonite possesses a potential for the practical application of impurity (OM, Zn(II), and Cr(III)) removal from IPA aqueous solutions.  相似文献   

6.
采用农业废弃物麦秆为原料制备黄原酸酯,通过傅立叶变换红外光谱FT-IR、扫描电子显微镜SEM等技术对麦秆黄原酸酯物理化学性质进行表征,并对水中Cu2+进行吸附特性研究,考察了不同条件对Cu2+吸附效果的影响,并将其应用于跌水式吸附法对含重金属沼液进行处理,为麦秆黄原酸酯应用于实际污水处理提供理论参考。结果表明,麦秆黄原酸酯对Cu2+的吸附行为符合伪二级动力学吸附模型与Langmuir等温吸附方程,298 K时,Cu2+的饱和吸附量为28.33 mg/g,溶出率为4.97%,对Cu2+的固持能力较强;黄原酸酯跌水吸附法对于含量为50 mg/L以下的Cu2+废水去除率达到80%以上,对实际沼液中Pb、Zn、Cd、Cu的去除率为44.42%~90.16%,去除顺序为Cd>Pb>Cu>Zn。  相似文献   

7.

Purpose

Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions.

Methods

Biochar was produced from dairy manure (DM) at two temperatures: 200°C and 350°C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0–5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.

Results

The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g?1, respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g?1, respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO 4 3? or CO 3 2? originating in biochar, with less to the surface complexation through –OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80–100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic –OH complexation. Among the precipitation, 20–30 % of the precipitation occurred as metal phosphate and 70–80 % as metal carbonate. For DM350, 75–100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic –OH site or delocalized π electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.

Conclusions

Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.  相似文献   

8.
硅烷化改性沸石对重金属离子的吸附性能   总被引:2,自引:0,他引:2  
制得一种用于重金属废水处理的新型硅烷化改性沸石吸附剂,成本低、效果显著且稳定。通过对改性沸石表征,分析了改性对沸石结构的影响。结果表明,改性一定程度降低了原沸石的晶体特征,但基本上保持了其结构组成;硅烷化改性成功地在沸石上接枝了氨基。对硅烷化沸石的特性研究,得出硅烷化沸石对Ni2+、Cu2+、Zn2+和Pb2+吸附最佳投加量为1、1、1.6和0.6 g/L,且此时对4种离子的去除率也较好;吸附动力学研究得出,其吸附过程可用二级动力学方程较好地拟合;吸附达到平衡时,4种金属离子的平衡吸附量分别为11.23、17.41、15.45和59.42 mg/g;硅烷化沸石对金属离子的吸附行为更符合Langmuir模型,为化学吸附;在酸性条件下(pH=2~6),硅烷化沸石仍保持一定的吸附能力,具有一定的耐酸性。  相似文献   

9.
A study was conducted to evaluate the effects of elevated concentrations of copper (Cu) and zinc (Zn) in a soil treated with biosolids previously spiked with these metals on Pinus radiata during a 312-day glasshouse pot trial. The total soil metal concentrations in the treatments were 16, 48, 146 and 232 mg Cu/kg or 36, 141, 430 and 668 mg Zn/kg. Increased total soil Cu concentration increased the soil solution Cu concentration (0.03–0.54 mg/L) but had no effect on leaf and root dry matter production. Increased total soil Zn concentration also increased the soil solution Zn concentration (0.9–362 mg/L). Decreased leaf and root dry matter were recorded above the total soil Zn concentration of 141 mg/kg (soil solution Zn concentration, >4.4 mg/L). A lower percentage of Cu in the soil soluble?+?exchangeable fraction (5–12 %) and lower Cu2+ concentration in soil solution (0.001–0.06 μM) relative to Zn (soil soluble?+?exchangeable fraction, 12–66 %; soil solution Zn2+ concentration, 4.5–4,419 μM) indicated lower bioavailability of Cu. Soil dehydrogenase activity decreased with every successive level of Cu and Zn applied, but the reduction was higher for Zn than for Cu addition. Dehydrogenase activity was reduced by 40 % (EC40) at the total solution-phase and solid-phase soluble?+?exchangeable Cu concentrations of 0.5 mg/L and 14.5 mg/kg, respectively. For Zn the corresponding EC50 were 9 mg/L and 55 mg/kg, respectively. Based on our findings, we propose that current New Zealand soil guidelines values for Cu and Zn (100 mg/kg for Cu; 300 mg/kg for Zn) should be revised downwards based on apparent toxicity to soil biological activity (Cu and Zn) and radiata pine (Zn only) at the threshold concentration.  相似文献   

10.
This study aims to synthesize 2-hydroxyethyl acrylate (HEA) and 2-acrylamido-2-methylpropane sulfonic (AMPS) acid-based hydrogels by gamma radiation and to investigate their swelling behavior and heavy metal ion adsorption capabilities. The copolymer hydrogels prepared were characterized via scanning electron microscopy, Fourier transformed infrared spectra, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The research showed that the copolymer hydrogel was beneficial for permeation due to its porous structure. In addition, the experimental group A-2-d [70 % water volume ratio and (n (AMPS)/n (HEA))?=?1:1] was an optimal adsorbent. The optimal pH was 6.0 and the optimal temperature was 15 °C. Pb2+, Cd2+, Cu2+, and Fe3+ achieved adsorption equilibriums within 24 h, whereas Cr3+ reached equilibrium in 5 h. Pb2+, Cd2+, Cr3+, and Fe3+ maximum load capacity was 1,000 mg L?1, whereas the Cu2+ maximum capacity was 500 mg L?1. The priority order in the multicomponent adsorption was Cr3+>Fe3+>Cu2+>Cd2+>Pb2+. The adsorption process of the HEA/AMPS copolymer hydrogel for the heavy metal ions was mainly due to chemisorption, and was only partly due to physisorption, according to the pseudo-second-order equation and Langmuir adsorption isotherm analyses. The HEA/AMPS copolymer hydrogel was confirmed to be an effective adsorbent for heavy metal ion adsorption.  相似文献   

11.
The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu2+ removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9?×?106 Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu2+/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu2+ is the major mechanism.  相似文献   

12.
Abstract

Adsorption, desorption, potential and selective distribution of Cu, Zn, Cd, Pb and Ni were investigated in three typical soils of Japan under flooded condition.

The results indicate that the sorption of all heavy metals was linear upto the maximum concentration (500 μg/g soil) employed in the present studies in all the soils. The magnitude of sorption in general was in the order of Pb > Cu > Zn > Cd > Ni. The adsorption coefficients showed wide variations among different soils as well as metal ions. The hysteresis of sorption and desorption by KNO3 was well pronounced for both the metal ions and the soils. The desorption rate was greater than the fixation rate indicating the predominance of the chemosorption over physical processes. The major portion of sorbed metals were retained in the unextractable form, which over all accounted for more than 50% of the sorbed metals.  相似文献   

13.
This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely eliminating Escherichia coli after 30-min contact time demonstrating its effectiveness as a disinfectant. Systems containing both E. coli and metals exhibited 100 % E. coli reduction after 15-min contact time and maximum metal adsorption removal efficiencies of 97, 98, and 99 % for Pb2+, Cd2+, and Zn2+ respectively after 60 min; 0.182–0.266 mg/g of metal ions were adsorbed by the zeolites in the single- and mixed-metal-containing solutions. Nonmodified clinoptilolite showed no antibacterial properties. This study demonstrated that silver-modified clinoptilolite exhibited high disinfection and heavy metal removal efficiencies and consequently could provide an effective combined treatment system for the removal of E. coli and metals from contaminated water streams.  相似文献   

14.
The concentration of nine metals was measured in liver, kidney, heart, muscle, plastron, and carapace of Aspideretes gangeticus from Rasul and Baloki barrages, Pakistan. The results indicated that metal concentration were significant different among tissues of Ganges soft-shell turtles. However, higher concentrations of Co (5.12 μg/g) and Ni (1.67 μg/g) in liver, Cd (0.41 μg/g) in heart, Fe (267.45 μg/g), Cd (2.12 μg/g) and Mn (2.47 μg/g) in kidney, Cd (0.23 μg/g), Cu (2.57 μg/g), Fe (370.25 μg/g), Mn (5.56 μg/g), and Pb (8.23 μg/g) in muscle of A. gangeticus were recorded at Baloki barrage than Rasul barrage. Whereas mean concentrations of Pb (3.33 μg/g) in liver, Co (1.63 μg/g), Cu (11.32 μg/g), Pb (4.8 μg/g) and Zn (144.69 μg/g) in heart, Co (4.12 μg/g) in muscle, Ni (1.31 μg/g), Pb (2.18 μg/g), and Zn (9.78 μg/g) in carapace were recorded higher at Rasul barrage than Baloki barrage. The metals followed the trend Fe > Zn > Ni > Cu > Mn > Pb > Cr > Co > Cd. Metals of toxicological concern such as Cr, Pb, and Cd were at that level which can cause harmful effects to turtles. The results provide baseline data of heavy metals on freshwater turtle species of Pakistan.  相似文献   

15.
Heavy metals in the surface soils from lands of six different use types in one of the world’s most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma–mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2?×?104 km2) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas?>?waste disposal/treatment sites?~?industrial areas?>?agricultural lands?~?forest lands?>?water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.  相似文献   

16.
Various hazardous substances contained in waste TV sets might be released into environment via dust during recycling activities. Two brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), and five kinds of heavy metals (Cu, Pb, Cd, Cr, and Ni) were detected in indoor dust collected from two workshops (TV dismantling workshop and subsequent recycling workshop). PBDEs concentrations in dust from waste wires recycling line (722,000 ng/g) were the highest among the studied sites, followed by those in manual dismantling–sorting line (117,000 ng/g), whereas TBBPA concentrations were the highest in manual dismantling–sorting line (557 ng/g) and printed circuit board (PCB) recycling line (428 ng/g). For heavy metals, Cu and Pb were the most enriched metals in all dust samples. The highest concentration of Pb (22,900 mg/kg) was found in TV dismantling workshop-floor dust. Meanwhile, Cu was the predominant metal in dust from the PCB recycling line, especially in dust collected from electrostatic separation area (42,700 mg/kg). Occupational exposure assessment results showed that workers were the most exposed to BDE-209 among the four PBDE congeners (BDE-47, BDE-99, BDE-153, and BDE-209) in both workshops. The hazard quotient (HQ) indicated that noncancerous effects were unlikely for both BFRs and heavy metals (HQ?<?1), and carcinogenic risks for Cd, Cr, and Ni (risk?<?10?6) on workers in two workshops were relatively low.  相似文献   

17.
The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg?g?1 of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg?g?1 (Cu) to 15.21 mg?g?1 (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.  相似文献   

18.
改性甘蔗渣对Cu2+和Zn2+的吸附机理   总被引:1,自引:1,他引:0  
研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu2+和Zn2+的吸附性能,包括吸附动力学和吸附等温线。结果表明,改性后的甘蔗渣对重金属离子Cu2+和Zn2+的吸附容量有显著提高,对Cu2+和Zn2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu2+的吸附量分别为60.21和33.45 mg/g,对Zn2+的吸附量分别是70.53和36.53 mg/g。两种改性甘蔗渣对两种金属离子的吸附在30 min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu2+和Zn2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。  相似文献   

19.
This study was performed to determine the concentrations of some trace metals (Cd, Cu, Pb, Ni, Zn, and Fe) in Holothuria tubuosa (Gmelin, 1788) belonging to Echinoderm species and in sediments that they live at three different stations (Gelibolu, Umur Bey/Lapseki, and Dardanos) on Dardanelles Strait between April 2013 and March 2014. The mean trace metal concentrations determined in H. tubulosa and sediment were as follows: Cd 0.18 mg/kg, Cu 2.43 mg/kg, Pb 2.09 mg/kg, Ni 14.58 mg/kg, Zn 16.86 mg/kg, and Fe 73.46 mg/kg and Cd 0.70 mg/kg, Cu 5.03 mg/kg, Pb 14.57 mg/kg, Ni 27.15 mg/kg, Zn 54.52 mg/kg, and Fe 3779.9 mg/kg, respectively. It was detected that the statistical difference between trace metals determined seasonally in muscle tissue of H. tubulosa was significant (p?>?0.05). As a result of the study, it was detected that H. tubulosa is a bioindicator species in determining Ni trace metal in sediment. The results were compared to the limit values of National and International Food Safety, and it was detected that Cd and Ni concentrations measured in sediment were above LEL of Ni and Cd concentrations according to Sediment Quality Guidelines.  相似文献   

20.
Heavy metal distribution in medicinal plants is gaining importance not only as an alternative medicine, but also for possible concern due to effects of metal toxicity. The present study has been focused on emphasizing the heavy metal status and bioaccumulation factors of V, Mn, Fe, Co, Cu, Zn, Se (essential metals) and Cr, Ni, Cd, As and Pb (potentially toxic metals) in medicinal plants grown under two different environmental conditions e.g., near to Khetri copper mine and those in fertile soils of Haridwar, both in India, using Instrumental Neutron Activation Analysis (relative method) and Atomic Absorption Spectrometry. The copper levels in the medicinal plants from Khetri were found to be 3-4 folds higher (31.6–76.5 mg kg?1) than those from Haridwar samples (7.40–15.3 mg kg?1), which is correlated with very high copper levels (763 mg kg?1) in Khetri soil. Among various heavy metals, Cr (2.60–5.92 mg kg?1), Cd (1.47–2.97 mg kg?1) and Pb (3.97–6.63 mg kg?1) are also higher in concentration in the medicinal plants from Khetri. The essential metals like Mn (36.4–69.3 mg kg?1), Fe (192–601 mg kg?1), Zn (24.9–49.9 mg kg?1) and Se (0.13–0.91 mg kg?1) and potentially toxic metals like Ni (3.09–9.01 mg kg?1) and As (0.41–2.09 mg kg?1) did not show much variations in concentration in the medicinal plants from both Khetri and Haridwar. The medicinal plants from Khetri, e.g., Ocimum sanctum, Cassia fistula, Withania somnifera and Azadirachta Indica were found rich in Ca and Mg contents while Aloe barbadensis showed moderately high Ca and Mg. Higher levels of Ca-Mg were found to correlate with Zn (except Azadirachta Indica). The bioaccumulation factors (BAFS) of the heavy metals were estimated to understand the soil-to-plant transfer pattern of the heavy metals. Significantly lower BAF values of Cu and Cr were found in the medicinal plants from Khetri, indicating majority fraction of these metals are precipitated and were immobilized species unsuitable for plant uptake. Overall, Withania somnifera (Ashwagandha) showed very high metal bioaccumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号