首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Goal, Scope and Background  Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compounds in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of everincreasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. Main Features  China is the world’s largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Results  Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. Discussion  The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites’ conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. Conclusions  Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. Recommendations and Perspectives  The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application. ESS-Submission Editor: Dr. Ding Wang (wangd@ihb.ac.cn)  相似文献   

2.
Goal, Scope and Background Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Methods Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Results Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Discussion Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying capacity. Conclusions The DFCR-based nutrient loadings analysis indicates, in trash fish feed culturing areas, that it is more critical and has been proved to be a valuable loading calculation method. The modeling approach for Xiangshan Harbor presented in this paper is a cost-effective method for assessing the environmental impact and determining the capacity. Carrying capacity information can give scientific suggestions for the sustainable management of aquaculture environments. Recommendations and Perspectives It has been proved that numerical models were convenient tools to predict the environmental carrying capacity. The development of models coupled with dynamic and aquaculture ecology is a requirement of further research. Such models can also be useful in monitoring the ecological impacts caused by mariculture activities. ESS-Submission Editor: Hailong Wang (hailong.wang@ensisjv.com)  相似文献   

3.
介绍了生物修复的概念、水产养殖存在的自身污染问题及其主要生物修复技术.营养物污染、药物污染和底泥富集污染是水产养殖存在的主要自身污染问题;微生物修复、水生植物修复和水生动物修复是污染养殖水域生物修复的3种主要形式;微生物的有效性、生物入侵、二次污染、修复生物的季节性和非水生植物的利用等方面是实施生物修复应注意的主要方面.最后指出,推行清洁生产、实行生态养殖是水产养殖业可持续发展的出路.  相似文献   

4.
水产养殖自身污染及其生物修复技术   总被引:18,自引:0,他引:18  
介绍了生物修复的概念、水产养殖存在的自身污染问题及其主要生物修复技术。营养物污染、药物污染和底泥富集污染是水产养殖存在的主要自身污染问题;微生物修复、水生植物修复和水生动物修复是污染养殖水域生物修复的3种主要形式;微生物的有效性、生物入侵、二次污染、修复生物的季节性和非水生植物的利用等方面是实施生物修复应注意的主要方面。最后指出,推行清洁生产、实行生态养殖是水产养殖业可持续发展的出路。  相似文献   

5.
循环水养殖系统水质变化特征的中试研究   总被引:1,自引:0,他引:1  
采用循环水养殖系统进行虹鳟、鲟鱼和鲢鱼的阶梯养殖中试研究,在不更换新鲜水的情况下,系统连续运行30天,分析其中COD、NH4+-N和TP的变化特征。结果表明,在相同养殖密度情况下,养殖虹鳟鱼使循环水COD、NH4+-N和TP浓度分别增加26.6%、45.7%和37.4%,养殖鲟鱼使COD、NH4+-N和TP浓度分别增加16.0%、21.6%和14.4%,生化池对COD、NH4+-N和TP的去除率分别为39.8%、50.0%和1.9%。系统还加入了鲢鱼养殖单元和配置水生植物的沉淀池,增加了系统对污染物的去除效果。实验自第21天起向沉淀池投加壳聚糖,使循环水浊度降低了46.6%,色度降低了38.0%。经过30 d的连续运行,除TP指标外,COD和NH4+-N浓度仍满足《地表水环境质量标准》(GB3838-2002)中地表水Ⅲ类功能区用水标准。  相似文献   

6.
象山港网箱养殖对海域环境的影响及其养殖环境容量研究   总被引:9,自引:0,他引:9  
以象山港海域的潮流模型和物质输运模型为基础,建立了各网箱养殖区的氮、磷污染物排放量与研究海域水质之间的响应关系,对该海域的养殖污染状况进行了模拟,讨论了该海域的网箱养殖环境容量.结果表明,象山港内的氮、磷浓度在养殖区密集的港顶海域超出一类水质标准;该海域的氮、磷养殖环境容量分别为670.74t/a和77.32t/a.目前,象山港内各网箱养殖区的污染物排放量已超出其容量,需进行削减.  相似文献   

7.
主要综述了国内外水产养殖废水的物理化学处理和生物处理 2方面的技术 ,并总结了水产养殖废水循环使用的水处理工艺流程和生物工程在水产养殖废水处理中的应用 ,表明了水产养殖废水的综合利用和无害化排放技术为今后发展方向。  相似文献   

8.
Tapia M  Zambrano L 《Ambio》2003,32(4):252-257
Aquaculture has been seen as a solution to food/protein availability in rural populations of poor countries. It is mainly based on exotic species, that produce changes in host system dynamics once introduced. Aquaculture not only changes the ecology of freshwater systems, but can also lead to modification of social relations. Until now, aquaculture programs have not been adequately analyzed no questioned enough. We evaluate both ecological effects and local social benefits of common carp aquaculture programs in shallow ponds of rural areas, using a municipality in Central Mexico as a case study. Using an "environmental entitlements" approach, our findings suggest that: i) carp aquaculture increases water turbidity and depletes native species reducing the poor people's access to them; ii) aquaculture mainly benefits pond owners rather than poor peasants. This mainly results from changes in fishing rights. We conclude that aquaculture policy goals and assumptions of benefits should be reviewed, if the negative ecological effects are to be decreased and conditions for people in rural areas are to be improved.  相似文献   

9.
臭氧/ 生物活性炭深度处理循环养殖废水   总被引:5,自引:0,他引:5  
随着工厂化循环水养殖的不断发展,高浓度循环养殖废水对环境污染日益严重.为实现环境友好和资源节约,采用臭氧/生物活性炭对循环养殖废水进行深度处理中试研究.实验结果表明,臭氧化臭氧最佳投加量为4 mg/L,显著增强水体的可生化性,使TOC(总有机碳)/UV254(在波长为254 nm处的单位比色皿光程下的紫外吸光度)提高80%.臭氧/生物活性炭对循环养殖废水中的有机物和氨氮具有良好的去除效果.臭氧/生物活性炭对TOC、高锰酸盐指数和UV254的最终去除率比生物活性炭分别高11.9%、13.4%和6.5%.臭氧/生物活性炭和生物活性炭对氨氮的最终去除率分别为96.0%、90.7%.  相似文献   

10.
电子废弃物对人类环境的影响,已成为全球化的问题。通过对发达国家关于电子废弃物管理以及资源化技术的进展回顾,针对我国目前的情况提出相应的对策:制定延伸生产者责任以及有害物质的停用限期的相应法规;建立电子废弃物回收网络体系;通过国家政策和经济的扶持,尽快建立专门处理电子废弃物的机构;加快我国电子废弃物处理技术的步伐,尽快提高现有工艺及设备。  相似文献   

11.
Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety.
Graphical abstract ?
  相似文献   

12.
In this report, we refer to pharmaceuticals that are widespread in the urban aquatic environment and that mainly originate from wastewater treatment plants or non-point source sewage as “wastewater-marking pharmaceuticals” (WWMPs). To some extent, they reflect the condition or trend of water contamination and also contribute to aquatic environmental risk assessment. The method reported here for screening typical WWMPs was proposed based on academic concerns about them and their concentrations present in the urban aquatic environment, as well as their properties of accumulation, persistence, eco-toxicity and related environmental risks caused by them. The screening system consisted of an initial screening system and a further screening system. In the former, pharmaceuticals were categorised into different evaluation levels, and in the latter, each pharmaceutical was given a normalised final evaluation score, which was the sum of every score for its properties of accumulation, persistence, eco-toxicity and environmental risk in the aquatic environment. The system was applied to 126 pharmaceuticals frequently detected in the aquatic environment. In the initial screening procedure, five pharmaceuticals were classified into the “high” category, 16 pharmaceuticals into the “medium” category, 15 pharmaceuticals into the “low” category and 90 pharmaceuticals into the “very low” category. Subsequently, further screening were conducted on 36 pharmaceuticals considered as being of “high”, “medium” and “low” categories in the former system. We identified 7 pharmaceuticals with final evaluation scores of 1–10, 10 pharmaceuticals with scores of 11–15, 15 pharmaceuticals with scores from 16 to 20 and 4 pharmaceuticals with scores above 21. The results showed that this screening system could contribute to the effective selection of target WWMPs, which would be important for spatial-temporal dynamics, transference and pollution control of pharmaceuticals in the urban aquatic environment. However, there remains a number of pharmaceutical parameters with measured data gaps, such as organic carbon adsorption coefficients and bioconcentration factors, which, if filled, would improve the accuracy of the screening system.  相似文献   

13.
In the preceding series of contributions to ESPR typical examples from actual fields of water chemistry were presented on various topics: integrated water quality management, diagnosis of water bodies, therapy of aquatic systems, and fitness for aquatic systems. These contributions clearly showed the need and importance of more intensive research. In the principle committee III 'Basic Research' of the Water Chemical Society, various expert groups work on scientific backgrounds in these fields. Some relevant topics are selected in this outlook, mainly on interactions of solids with water, the role of environmental colloids, the development of modern biochemical methods for diagnosis, the impact of chemical speciation on bioavailability and water technology, and the development of advanced methods in water treatment technology. Innovative approaches to understand the interactions between pollutants, water and solids are crucial for assessment of contaminants with biochemical and analytical methods, for the development of new efficient technologies and for application of treatment methods with little or no waste and by-product formation.  相似文献   

14.
孙颉  宋协法  马真 《环境工程学报》2013,7(6):2250-2254
为提高生物膜法处理养殖污水的效果,对不同信号分子条件下的生物膜处理情况进行研究。在室内循环水养殖系统中,设定3个实验组和1个对照组,分别添加乙醇、C6-HSL、N-3-oxo-C8-HSL和蒸馏水,并在模拟过程中取样分析。实验结果表明,3个实验组附着基上的生物量明显多于对照组,尤其是添加N-3-oxo-C8-HSL组产生的生物量约为对照组的6倍;经添加C6-HSL和N-3-oxo-C8-HSL处理的养殖水体中,亚硝酸盐最终浓度比对照组低28.6%,但无机磷浓度稍高。数据因子分析结果表明,实验过程中(9~27 d),添加AHLs信号因子C6-HSL和N-3-oxo-C8-HSL两组养殖水体内环境的总体得分较高,说明养殖水体的内环境处于较好状态。  相似文献   

15.
在相关养殖容量研究的基础上,提出了养殖环境容量和可持续养殖容量的概念和内涵.以哑铃湾网箱养殖为例,建立了考虑时间累积效应后的养殖环境容量和考虑了社会、经济和环境综合效益后的可持续养殖容量计算模型.估算了在10年时段内哑铃湾网箱养殖环境容量和可持续养殖容量.结果表明,哑铃湾网箱养殖最优环境容量为每年4.11万箱,可持续养殖容量为每年3.45万箱.  相似文献   

16.

The rapid development of coastal aquaculture in recent decades has led to excessive discharge of organic matter and nutrients into surrounding waters, which could result in eutrophication and potentially affect metal cycling. In our study, the influence of algal organic matter on metal accumulation was examined in three coastal sediment cores taken from a tropical region, Hainan Island, China. Overall, metal pollution adjacent to aquaculture ponds remained at low levels on the coast, except Zn, Cd, and Sn were moderately to highly enriched in the Dongjiao sediments. The δ13C values and the atomic C/N ratios indicated a major contribution of phytoplankton to sedimentary organic matter at the Dongjiao site. Moreover, both the algae-derived organic matter and effluent nitrogen were significantly associated with the enriched Zn, Cd, and Sn, suggesting that nutrient-induced phytoplankton growth and its organic matter may act as a “biological pump” to enhance the accumulation of metals. Wastewater treatment for aquaculture ponds should include the control of algal organic matter.

  相似文献   

17.
济南市固体废物污染防治规划方法   总被引:3,自引:0,他引:3  
以《中华人民共和国固体废物污染环境防治法》和可持续发展战略思想为指导,以济南市为背景,研究了在新形势下如何进行城市固体废物污染防治规划。  相似文献   

18.
Contribution of fisheries and aquaculture to global food security is linked to increased fish consumption. Projections indicate that an additional 30–40 million tonnes of fish will be required by 2030. China leads global aquaculture production accounting for 60% in volume and 45% in value. Many changes in the Chinese aquaculture sector are occurring to strive towards attaining environmental integrity and prudent use of resources. We focus on changes introduced in freshwater aquaculture developments in China, the main source of food fish supplies. We bring forth evidence in support of the contention that Chinese freshwater aquaculture sector has introduced major paradigm changes such as prohibition of fertilisation in large water bodies, introduction of stringent standards on nutrients in effluent and encouragement of practices that strip nutrients among others, which will facilitate long-term sustainability of the sector.  相似文献   

19.
As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation.  相似文献   

20.
Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号