首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
臭氧作为强氧化剂对有机物的氧化反应有选择性,能很快氧化分解木质素等发色有机物,中试研究了臭氧投加量、接触时间等对造纸废水生化处理出水深度处理的影响。结果表明:臭氧投加量为63.47~243.49mg/L时,COD、254nm紫外光下的吸光度(UV254)和色度去除率分别为22.61%~46.67%、22.35%~69.09%及55%~93%,其中色度有较高的去除率,即使在臭氧投加量仅为63.47mg/L时色度去除率也达到约55%;在接触时间为0.62~2.53h时,随着接触时间的延长,COD、UV254及色度去除率随之增加,而1.10h后色度去除率增加不多。以深度脱色为目标,完成了5 000m3/d的工程应用,臭氧相对投加率为0.20~0.50mg(以每毫克COD计)时,色度去除率为55.0%~84.0%。  相似文献   

2.
以实际印染厂二级生化出水为处理对象,以COD、色度、UV254为评价指标,采用先絮凝沉淀后臭氧氧化及先臭氧氧化后絮凝沉淀2种工艺分别进行印染废水深度处理实验。结果表明,当进水水质为:COD 80~120 mg/L、UV2540.30~0.70、色度72~84倍,在絮凝剂投加量为13.5 mg/L、臭氧投加量为16 mg/L、氧化反应30 min时,先絮凝沉淀后臭氧氧化工艺出水的COD、UV254、色度平均值分别为45.1 mg/L和0.11、4倍;在臭氧投加量为16 mg/L、氧化反应30 min、絮凝剂投加量为10.1 mg/L时,先臭氧氧化后絮凝沉淀工艺出水的COD、UV254、色度分别为45 mg/L和0.10、4倍,说明2种工艺均是可行的,且先臭氧氧化后絮凝沉淀为较优工艺。  相似文献   

3.
采用改性矿物吸附法和O3氧化法对某制药厂维生素B12废水进行脱色处理。以废水色度去除率大于50%为目的,通过实验确定改性矿物吸附法和O3氧化法处理维生素B12废水的最佳工艺条件:废水的pH为3.00,有机化膨润土的投加量为5 g/L,PAC的投加量为6 g/L,投加有机化膨润土后搅拌时间为30 min时,废水的色度去除率可达到51.3%,处理成本为12.85元/t。O3氧化法的最佳条件:废水的pH保持不变,O3流量为5 g/h,反应时间为2 min,废水的色度去除率可达到68.8%,处理成本为0.96元/t。对比这2种方法,O3氧化法处理该废水成本更低、效率更高,并且能提高废水的可生化性以便后续处理。  相似文献   

4.
采用臭氧/过氧化氢氧化技术对活性红X-3B模拟染料废水进行处理。考察和优化了连续曝气实验条件下臭氧投加流量、反应时间、初始pH、过氧化氢投加量等因素对活性染料废水处理效果的影响。结果表明,最佳操作参数为反应时间60min、pH 10.25、臭氧投加量250mg/(L·h)、过氧化氢投加量36mg/L。在此条件下,COD去除率达到70.09%,色度去除率达到99.95%,BOD5/COD由初始的0.04提高到0.32,废水可生化性得到较好改善。  相似文献   

5.
臭氧氧化法处理反渗透浓缩垃圾渗滤液   总被引:7,自引:1,他引:6  
采用臭氧氧化法处理经反渗透膜处理后的浓缩垃圾渗滤液,考察了反应时间、臭氧投量、pH和温度对COD,色度以及浓缩液中腐殖酸的去除影响,通过BOD5/COD变化分析了臭氧氧化对浓缩液生化性的提高作用。结果表明:在pH 8.0,温度30℃,臭氧投量5 g/h,反应时间90 min的条件下,浓缩液的COD、色度以及浓缩液中腐殖酸的去除率分别达到67.6%、98.0%和86.1%, BOD5/COD从0.008提升到0.26,生化性有很大提高。  相似文献   

6.
采用臭氧/活性炭联合工艺对焦化废水A2/O出水进行深度处理。考察了溶液初始pH值、臭氧投加量、活性炭投加量及使用次数、反应时间对焦化废水处理效果的影响。实验结果表明,活性炭的使用可显著提高臭氧对焦化废水COD的去除率,在溶液初始pH值为10.25、臭氧投加量为7.5 mg/min、活性炭投加量50 g/L、反应时间为30 min条件下,COD去除率达到73.51%。同时,在活性炭重复使用10次时,COD去除率为70.85%,仅降低了2.66%。  相似文献   

7.
利用响应面方法(RSM)对光催化/臭氧氧化深度处理炼油废水工艺进行优化,考察了臭氧通量、光催化剂投加量、初始p H和反应时间对于处理效果的影响,提出采用该工艺的数学模型及优化后的工艺参数。结果表明,各影响因子对COD去除率影响顺序为反应时间>光催化剂投加量>初始p H>臭氧通量,方程的F值为11.54,相关系数为0.9537,调整相关系数为0.915,说明数学模型可以较好地模拟真实的反应曲面。优化得到最佳的工艺参数:臭氧通量1.05 L/min、光催化剂投加量0.33 g/L、初始p H 7.51、反应时间96.95 min,在该条件下,对COD去除率为97.88%,与预测值99.49%接近。采用95%处理水和5%新鲜水混合,水质达到了循环冷凝水的补充水水质指标要求。  相似文献   

8.
采用以铁板作阴、阳极,活性炭作填充粒子的三维电极电化学氧化法深度处理DOP生产废水。探讨了废水的pH、槽电压、极板间距、活性炭投加量和反应时间等因素对COD去除率的影响,并通过正交实验确定了处理DOP废水的最佳工艺条件,还对COD的降解动力学规律进行了初步探讨。结果表明,三维电极电化学氧化法处理DOP生产废水的最佳工艺条件为:pH值为5、电极间距为4 cm、槽电压为25 V、活性炭投加量为12 g/L、电解时间为90 min。在此条件下,COD去除率可达71.5%,出水COD浓度为50.9 mg/L,达到国家污水综合排放标准(GB8978-1996)的一级标准。三维电极电化学氧化法对COD的降解反应呈表观一级反应,降解速率方程为C=C0e-0.0124t。  相似文献   

9.
絮凝-Fenton试剂氧化处理印染废水   总被引:1,自引:0,他引:1  
采用Fenton试剂对某染袜厂2种印染废水(印染红和印染蓝)进行处理。考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对印染废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30 min、双氧水(30%)投加量4 mL/L、硫酸亚铁投加量300 mg/L、pH值为4左右。在最佳条件下,印染蓝废水经氧化处理后COD去除率大于80%,色度去除率95%以上;印染红废水需经絮凝预处理后再用Fenton试剂氧化处理,其脱色率达到了99.6%,COD去除率为91.2%,出水COD浓度为96 mg/L,可达标排放。  相似文献   

10.
采用臭氧辅助光芬顿法处理电镀添加剂生产废水,考察双氧水、FeSO4·7H2O、pH和反应时间等因素对废水COD和UV254去除的影响。实验结果表明,pH=4,臭氧通入量为0.25 g,双氧水的投加量93.3 mL/L,FeSO4·7H2O投加量为5.3 g/L,最佳反应时间为30 min,COD和UV254去除率分别达到92.64%和87.95%。这表明,臭氧辅助光芬顿法对电镀添加剂生产废水处理效果显著,处理时间大大减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号