首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Potted plants of radish (Raphanus sativus L., cv. Cherry Belle) were grown in the ambient air for 5 weeks, with or without the application of a soil drench of the anti-ozonant ethylenediurea (EDU). The 24-h mean ozone concentration during the experimental period was 31 nl l(-1). Towards the end of the experiment two ozone episodes, with maximum concentrations around 70 and 115 nl l(-1), occurred. No visible injury that could be attributed to ozone was observed on any of the plants. Shoot and hypocotyl biomass were significantly lower in the non-EDU-treated plants than in the EDU-treated plants. The non-EDU-treated plants had a 32% lower hypocotyl biomass and a 22% lower shoot biomass. The shoot:hypocotyl ratio of the non-EDU-treated plants was higher than that of the EDU-treated plants, although the difference was not statistically significant. EDU treatment increased the leaf area and decreased the chlorophyll content of the leaves. These differences were, however, not statistically significant. It is suggested that the ambient rural ozone climate in southern Sweden has the potential to decrease biomass production in Cherry Belle radishes in the absence of visible injury.  相似文献   

2.
EDU or ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea) has been used in experiments to assess ozone effects on vegetation under field conditions because it provides protection against oxidative damage. Tests have mainly been conducted on crop plants, but for woody species only few reports have provided evidence that it can be used in long-term experiments. In this study we tested the technique of stem injection of EDU to study the effects of ozone exposure on Populus nigra cv. Wolterson over one growing season. Cuttings of Populus nigra were grown in pots in the field and between mid-July and early September plants were repeatedly injected with EDU solution (5 mg/plant) or with water at 14-day intervals. Significant differences were found between EDU- and water-injected plants: water-treated plants had more foliar injury, more chlorotic leaves, and shedding of leaves started earlier, suggesting EDU was effective in preventing visible ozone injury and acceleration of senescence. Photosynthetic rates, measured for one leaf age, showed no differences but were mostly higher for the EDU-treated plants. At the end of the growing season diameter increment was 16% higher and there was a non-significant trend for above-ground biomass to be increased by 9% for the EDU-treated plants. This experiment has provided evidence that for this clone serious ozone damage occurs at relatively low concentrations and that EDU can provide protection against visible injury, as well as against longer term growth reductions.  相似文献   

3.
Agrawal SB  Singh A  Rathore D 《Chemosphere》2005,61(2):218-228
A field study was conducted to evaluate the suitability of ethylene diurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea; EDU) in assessing the impact of O3 on mung bean plants (Vigna radiata L. var. Malviya Jyoti) grown in suburban area of Allahabad city situated in a dry tropical region of India. EDU is a synthetic chemical having anti-ozonant property. Mean monthly O3 concentration varied between 64 and 69 microg m(-3) during the experimental period. In comparison to EDU-treated plants, non-EDU-treated plants showed significant reductions in plant growth and yield under ambient conditions. Significant favourable effects of EDU-application were observed with respect to photosynthetic pigments, soluble protein, ascorbic acid and phenol contents. EDU-treated plants maintained higher levels of pigments, protein and ascorbic acid in foliage as compared to non-EDU-treated ones. The study clearly demonstrated that EDU alleviates the unfavourable effects of O3 on mung bean plants, and therefore can be used as a tool to assess the growth and yield losses in areas having higher O3 concentrations.  相似文献   

4.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

5.
To study plant growth and yield effects of the antiozonant ethylenediurea (EDU), which is frequently used for ozone crop loss assessments, dose-response studies were carried out with potted bean plants under greenhouse conditions in winter and spring. Two cultivars of Phaseolus vulgaris L., differing in sensitivity to ozone (O(3)), were grown in unfiltered air on a sandy loam rich in organic matter and on a vermiculite-clay mixture. Four treatments of EDU at concentrations from 300 to 800 mg liter(-1) were given as a soil drench during plant development. Foliar symptoms of EDU phytoxicity were observed at all doses, and plant biomass, particularly pod dry weight, was considerably reduced to increasing doses of EDU. Primary and first trifoliate leaf weight in EDU-treated plants increased as did the number of buds, indicating an extension of vegetative growth and a delay of reproductive processes. 'BBL 290' beans, which are O(3)-sensitive, were injured by EDU more than the O(3)-tolerant 'BBL 274'. The phytotoxic effects of EDU were more pronounced in the synthetic growth substrate than in field soil. In a second experiment, EDU was applied in concentrations from 100 to 400 mg liter(-1) to 'BBL 290' plants, exposed to filtered air or simulated levels of O(3) pollution. In field soil, plant growth and biomass partitioning in filtered air was only slightly altered by EDU, although leaf injury due to EDU occurred. In the vermiculite-clay mix, the biomass of most plant organs, particularly that of roots, was linearly reduced with increasing EDU doses. O(3) did not cause any alteration in plant biomass in field soil-grown and EDU-treated plants. Ozone leaf injury, which affected 67% of primary leaf area in non-treated plants, was completely suppressed by EDU doses as low as 100 mg liter(-1). This indicates that low concentrations of EDU, which do not affect plant growth in field soil, provide sufficient protection from O(3) injury. The need for careful EDU dose-response studies prior to field assessments is emphasized.  相似文献   

6.
Adult ash trees (Fraxinus excelsior L.), known to be sensitive or insensitive to ozone, determined by presence or absence of foliar symptoms in previous years, were treated with ethylenediurea (EDU) at 450 ppm by gravitational trunk infusion on six occasions at 21-day intervals in summer 2005 at Turin, Italy. At the end of the season, foliar ozone injury on EDU-treated trees was not complete, but was greatly and significantly reduced when compared to results from trees infused with water. Significant symptom reduction occurred at any crown level in the treated trees suggesting that EDU protected whole crowns. Gravitational infusion of EDU resulted in protection from ozone injury for ozone-sensitive ash trees. The amount of EDU needed to provide protection is assumed to be in the range 13-26 mg m(-2) leaf.  相似文献   

7.
A meta-analysis was conducted to quantitatively assess the effects of ethylenediurea (EDU) on ozone (O3) injury, growth, physiology and productivity of plants grown in ambient air conditions. Results indicated that EDU significantly reduced O3-caused visible injury by 76%, and increased photosynthetic rate by 8%, above-ground biomass by 7% and crop yield by 15% in comparison with non-EDU treated plants, suggesting that ozone reduces growth and yield under current ambient conditions. EDU significantly ameliorated the biomass and yield of crops and grasses, but had no significant effect on tree growth with an exception of stem diameter. EDU applied as a soil drench at a concentration of 200-400 mg/L has the highest positive effect on crops grown in the field. Long-term research on full-grown tree species is needed. In conclusion, EDU is a powerful tool for assessing effects of ambient [O3] on vegetation.  相似文献   

8.
The yields of eleven commercially grown soybean cultivars were compared in ethylenediurea (EDU)-treated and non-treated field plots in New Brunswick, New Jersey, over a 4 year period. No statistically significant difference between treatments was found for any cultivar; the inference being ambient ozone did not adversely affect soybean yield. Succeeding field experiments supported this interpretation of the data. 'Sanilac' white bean, a legume known to be more sensitive to O(3) than soybean, was found to produce a significantly greater yield in EDU-treated than non-treated plots, unlike a companion planting of 'Williams 82' soybean which did not exhibit the differential response. The results indicated that the specific EDU protocol used in the soybean experiments is capable of detecting an ozone effect in a legume. Moreover, in a concurrent greenhouse experiment the yield of EDU-treated Sanilac white bean was not significantly different from non-treated plants in the absence of ozone pollution. In a dose-response field experiment during a year of unusually high O(3) pollution, yield of 'Williams 82' increased slightly with each EDU increment up to 500 ppm and decreased at 1000 ppm. The difference between non-treated and EDU-treated plants, however, was not statistically significant. There was no evidence to suggest that the EDU concentration (500 ppm) used in previous soybean experiments reduced seed yield. Fortuitously, the tolerance of commercially-grown soybean to ambient ozone is at least partially conditioned by the practce of not irrigating the crop. The New Jersey results are in agreement with reports from Maryland, Georgia and Tennessee in which an adverse impact of ambient O(3) was not found in soybean, but contrary to a current predictive model.  相似文献   

9.
Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450ppm by gravitational trunk infusion in May-September 2005 (32.5ppmh AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O(3) effects on leaf growth and visible injury is controversial.  相似文献   

10.
A soil drench of [Formula: see text] (EDU) (150 ppm) applied to 'Progress No. 9' pea plants 24 h before an acute ozone exposure (0.25 ppm, 4 h) completely protected the foliage from visible symptoms normally induced by the pollutant. In the absence of ozone, EDU-treated plants were found to emit the same amount of C(2)H(4) as plants not treated with EDU. Based on this evidence, EDU-induced tolerance to ozone could not have been attributed to the prevention of an interaction between ethylene and ozone (sensu Mehlhorn and Wellburn). In the presence of ozone, EDU-treated plants did not emit the burst of C(2)H(4) that normally occurs (sensu Craker), extending the observation that EDU-treated plants do not exhibit the adverse physiological responses normally caused by ozone. The classic C(2)H(4) biosynthesis inhibitor aminoethoxyvinylglycine (AVG) did not prevent ozone phytotoxicity, although it significantly reduced ethylene emission from the ozonated tissue.  相似文献   

11.
Purple coneflower plants (Echinacea purpurea) were placed into open-top chambers (OTCs) for 6 and 12 weeks in 2003 and 2004, respectively, and exposed to charcoal-filtered air (CF) or twice-ambient (2x) ozone (O3) in 2003, and to CF, 2x or non-filtered (NF), ambient air in 2004. Plants were treated with ethylenediurea (EDU) weekly as a foliar spray. Foliar symptoms were observed in >95% of the plants in 2x-treated OTCs in both years. Above-ground biomass was not affected by 2x treatments in 2003, but root and total-plant biomass decreased in 2004. As a result of higher concentrations of select cell wall constituents (% ADF, NDF and lignin) nutritive quality was lower for plants exposed to 2x-O3 in 2003 and 2004 (26% and 17%, respectively). Significant EDU x O3 interactions for concentrations of cell wall constituents in 2003 indicated that EDU ameliorated O3 effects on nutritive quality. Interactions observed in 2004 were inconsistent.  相似文献   

12.
To study the biochemical mechanism of EDU protection against ozone injury, peroxidase, ascorbate-dependent peroxidase, and catalase activities, and the contents of ascorbic acid, dehydroascorbic acid, malondialdehyde and soluble protein were measured in Phaseolus vulgaris L. cv. Lit exposed to ozone and ethylenediurea (EDU) in open-top chambers. Plants not treated with EDU showed foliar bronzing due to ozone, while EDU-treated plants were not affected. EDU application modified the reaction of biochemical parameters to ozone. Soluble protein content was elevated by EDU. Peroxidase activity increased with ozone exposure in untreated plants only, while ascorbate-dependent peroxidase activity was lower in EDU treated plants. Catalase activity decreased in EDU-untreated plants. The ratio of ascorbic acid to dehydroascorbic acid was significantly increased in EDU treated plants. These results suggest that EDU might induce ascorbic acid synthesis and therefore provide the plant with a very potent antioxidant. Or the content of hydrogen peroxide was reduced due to other unknown processes and caused a delay in foliar senescence, regardless of whether these processes were ozone-induced or due to natural aging processes.  相似文献   

13.
The antiozonant EDU (ethylenediurea) was used to assess the impact of ambient O3 under field conditions on five cultivars of tropical wheat (Triticum aestivum L.). EDU solution (0 ppm and 400 ppm) was applied as soil drench (100 ml plant?1) 10 days after germination (DAG) at an interval of 12 days. EDU-treated plants showed significant increments in stomatal conductance, photosynthetic rate, variable fluorescence, total chlorophyll, ascorbic acid, proline and protein contents and protective enzymes (POX, SOD and APX) activities in HUW468, HUW510 and HUW234 cultivars, while, a reverse trend was observed for lipid peroxidation. EDU application restored grain yield significantly by maintaining higher levels of antioxidants, metabolites and enzymes in cultivars HUW468 and HUW510. Sonalika and PBW343 showed least response of measured parameters under EDU treatment suggesting their greater resistance to O3. EDU, thus proved its usefulness in screening suitable wheat cultivars for areas experiencing elevated concentrations of O3.  相似文献   

14.
During the growing season of 1990, five staggered crops of radish (Raphanus sativus L.) were grown in the field, using the cultivars 'Cherry Belle', 'Red Prince', and 'Red Devil B'. Half of the plants received a soil drench (100 ml plant(-1); 100 mg litre(-1) of ethylenediurea (EDU) once, early in plant development. Destructive harvests were carried out at 2-day intervals during vegetative development. Non-linear growth kinetics, derived from Richards' function, were fitted to the dry weight data of the total plant, main organs (shoot and hypocotyl) and to the dry weight ratio between below-ground and above-ground organs. Estimating the parameters of these non-linear functions and testing their differences between EDU-treated and untreated plants unveiled biologically meaningful information on the impact of different levels of ambient ozone (O(3)) during the growth periods. The modified function which was applied to the data of biomass partitioning between the major plant parts was more powerful in detecting transient alterations in assimilate allocation compared to the growth dynamics of individual plant organs. At low levels of O(3), biomass partitioning towards the below-ground sink organs was slightly delayed and finally restricted in EDU-treated plants. When ambient O(3) reached moderate levels, which did not cause visible foliar injury, assimilate partitioning between organs was only insignificantly altered during early growth when EDU-treatments were compared. As growth progressed, however, less assimilates were allocated towards the hypocotyl and roots in the plants not protected by EDU. This pattern was similar in all cultivars tested, but was smallest in 'Cherry Belle', which is known to be sensitive to O(3) with respect to foliar injury. During the 15- to 19-day periods of rapid growth, the O(3)-exposure >80 nl litre(-1) ranged from 0.015 to 0.209 microl litre(-1) O(3) h, which corresponds to 7 h d(-1) mean values between 40 and 50 nl litre(-1) O(3), confirming that ambient ozone did not exceed a moderate level in this study.  相似文献   

15.
Norway spruce saplings [Picea abies (L.) Karst.] were exposed during four growing seasons to two different ozone treatments in open-top chambers: charcoal filtered air (CF), and non-filtered air with extra ozone (NF+, 1.4xambient concentrations). Within each ozone treatment the saplings were either kept well watered or treated with a 7-8 week period with reduced water supply each growing season. The total biomass of the trees was measured in April and September during each of the last three growing seasons. NF+ significantly reduced the total biomass accumulation of Norway spruce saplings during the fourth growing season. No interaction between ozone and reduced water supply could be detected. The magnitude of the ozone impact after 4 years of exposure was an 8% reduction of the total plant biomass and a 1.5% reduction of the RGR. The reduced water supply reduced the total biomass 29% and the RGR 12%.  相似文献   

16.
Improved gas-liquid chromatography techniques were used to evaluate the effects of EDUa on soluble leaf carbohydrates in Phaseolus vulgaris L. ‘Bush Blue Lake 290’. This snap bean cultivar is normally rather sensitive to 03 but becomes highly tolerant when treated systemically with EDU. Less than 24 h is required to induce the resistance. Standardized trifoliate leaves from EDU-treated and control plants were sampled 48 h after treatment. Additional plants were sampled 48 h after treatment. Additional plants were exposed to 03 one day after EDU soil application to assess the plant tolerance induced. The optimal dose required to enhance oxidant tolerance was 50 mg/pot.Major sugars in both EDU-treated (03-tolerant) and untreated (03-sensitive) leaves were glyceraldehyde, erythritol, fructose, glucose and sucrose. Myo-inositol, ribose and arbitol were present in lesser or trace amounts. EDU-treatment resulted in significant increases (35–62%) in all soluble carbohydrates except glyceraldehyde and myo-inositol. Implications relating to plant tolerance, to oxidants and stress-induced senescence are discussed.  相似文献   

17.
Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.  相似文献   

18.
Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm. and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (approximately 10 cm) aerobic soil surface in the non-flooded treatment.  相似文献   

19.
The effects of harvest intensity (sawlog, SAW; whole tree, WTH; and complete tree, CTH) on biomass and soil C were studied in four forested sites in the southeastern US (mixed deciduous forests at Oak Ridge, TN and Coweeta, NC; Pinus taeda at Clemson, SC: and P. eliottii at Bradford, FL). In general, harvesting had no lasting effects on soil C. However, intensive temporal sampling at the NC and SC sites revealed short-term changes in soil C during the first few years after harvesting, and large, long-term increases in soil C were noted at the TN site in all treatments. Thus, changes in soil C were found even though lasting effects of harvest treatment were not. There were substantial differences in growth and biomass C responses to harvest treatments among sites. At the TN site, there were no differences in biomass at 15 years after harvest. At the SC site, greater biomass was found in the SAW than in the WTH treatment 16 years after harvest, and this effect is attributed to be due to both the N left on site in foliar residues and to the enhancement of soil physical and chemical properties by residues. At the FL site, greater biomass was found in the CTH than in the WTH treatment 15 years after harvest, and this effect is attributed to be due to differences in understory competition. Biomass data were not reported for NC. The effects of harvest treatment on ecosystem C are expected to magnify over time at the SC and FL sites as live biomass increases, whereas the current differences in ecosystem C at the TN site (which are due to the presence of undecomposed residues) are expected to lessen with time.  相似文献   

20.
Twenty-four experiments where EDU was used to protect plants from ozone (O3) in Italy are reviewed. Doses of 150 and 450 ppm EDU at 2-3 week intervals were successfully applied to alleviate O3-caused visible injury and growth reductions in crop and forest species respectively. EDU was mainly applied as soil drench to crops and by stem injection or infusion into trees. Visible injury was delayed and reduced but not completely. In investigations on mode of action, EDU was quickly (<2 h) uptaken and translocated to the leaf apoplast where it persisted long (>8 days), as it cannot move via phloem. EDU did not enter cells, suggesting it does not directly affect cell metabolism. EDU delayed senescence, did not affect photosynthesis and foliar nitrogen content, and stimulated antioxidant responses to O3 exposure. Preliminary results suggest developing an effective soil application method for forest trees is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号