首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 129 毫秒
1.
目前实际工程中通常采用现场抽气试验的方法确定垃圾填埋气收集系统的相关技术参数 ,这种方法不能对影响抽气效果的因素综合分析并加以优化。本文利用竖井抽气条件下填埋气压力分布模型 ,分析讨论了抽气系统各参数对对抽气效果的影响 ,提出了垃圾填埋场填埋气竖井收集系统的抽气量、抽气井影响半径、抽气井埋深的优化设计方法 ,可为填埋气污染控制与回收利用系统的规划设计及运行管理提供技术支持  相似文献   

2.
目前实际工程中通常采用现场抽气试验的方法确定垃圾填埋气收集系统的相关技术参数。这种方法不能对影响抽气效果的因素综合分析并加以优化,本文利用竖井抽气条件下填埋气压力分布模型,分析讨论了抽气系统各参数对对抽气效果的影响,提出了垃圾填埋场填埋气竖井收集系统的抽气量,抽气井影响半径,抽气井埋深的优化设计方法,可为填埋气污染控制与回收利用系统的规划设计及运行管理提供技术支持。  相似文献   

3.
以渗滤液回灌为核心的填埋场生化反应器是当今国际固体废物研究的新方向 ,其具有减少渗滤液处理难度和加速填埋场稳定化的作用 ,其中控制填埋场水分是关键。本文通过对填埋场水分运移特征的分析 ,建立了渗滤液回灌条件下 ,生化反应器填埋场水分迁移的饱和 -非饱和三维非稳定数学模型 ,并求其有限单元数值解 ,定量模拟和预报不同回灌条件下填埋场水分的时空分布规律并进行实用研究。针对重庆市长生桥卫生填埋场设计情况和实际条件 ,运移模拟模型分析了水平沟和竖式井回灌条件下填埋场内水分的分布规律 ,证明了协同回灌方式的有效性  相似文献   

4.
垃圾填埋场水分迁移模型的应用研究   总被引:4,自引:0,他引:4  
以渗滤液回灌为核心的填埋场生化反应器是当今国际固体废物研究的新方向,其具有减少渗滤液处理难度和加速填埋场稳定化的作用。其中控制填埋场水分是关键。本文通过对填埋场水分运移特征的分析。建立了渗滤液回灌条件下,生化反应器填埋场水分迁移的饱和-非饱和三维蛎稳定数学模型。并求其有限单元数值解,定量模拟和预报不同回灌条件下填埋场水分的时空分布规律并进行实用研究。针对重庆市长生桥卫生填埋场设计情况和实际条件。运移模拟模型分析了水平沟和竖式井回灌条件下填埋场内水分的分布规律,证明了协同回灌方式的有效性。  相似文献   

5.
在对长春市某垃圾填埋场进行野外调查的基础上 ,于室内进行了垃圾淋滤模拟实验。分析了垃圾渗滤液污染组分的自然衰减规律 ,建立了垃圾填埋场地下水污染的数值模型 ,采用FEFLOW软件对其进行模拟和预报 ,并取得了较好的效果 ,最后提出防止和防治垃圾填埋场污染地下水的若干措施。  相似文献   

6.
垃圾填埋场对地下水污染的模拟研究   总被引:9,自引:0,他引:9  
在对长春市某垃圾填埋场进行野外调查的基础上,于室内进行了垃圾淋滤模拟实验。分析了垃圾渗滤液污染组分的自然衰减规律,建立了垃圾填埋场地下水污染的数值模型,采用FEFLOW软件对其进行模拟和预报,并取得了较好的效果,最后提出防止和防治垃圾填埋场污染地下水的若干措施。  相似文献   

7.
土壤柴油污染修复的抽气提取去除实验研究   总被引:2,自引:1,他引:1  
陈家军  田亮  李玮  金岚 《环境工程学报》2008,2(10):1416-1420
为得到土壤气相抽提(SVE)去除柴油的优化条件,进行了一维土柱抽气提取去除柴油污染物的实验研究,研究不同初始含水率、不同抽气量对污染土壤中柴油去除率的影响及不同深度残留柴油的变化规律。结果表明:在本实验模拟的范围内,抽气量越大,SVE处理效果越好;初始含水率越低,处理效果越好;此外,不同深度去除率变化的规律基本上是随深度的增大而减小。实验结果可为土壤轻油污染实际治理提供实验数据基础。  相似文献   

8.
针对不同抽水井捕获半径及驻点获取方法存在局限性和误差的问题,以潜水、承压水2个类型污染场地为例,分别采用实测法、解析解公式法、数值模拟法3种方法计算单井捕获半径及驻点值;通过对比分析,研究了不同条件下3种方法的局限性及精确度;探讨了不同类型污染场地获取捕获半径及驻点的最适宜方法。结果表明:对于承压水类型,解析解计算值与实际观测值误差较小,为3.2%;对于水位降深相对于含水层厚度不可忽略的潜水类型,解析解计算值与实际观测值误差较大,为80.7%;在充分掌握水文地质条件时,数值模型模拟结果与实际观测误差值不超过10%。因此,当场地水文地质情况符合解析解公式假设条件时,可采用解析解公式法获取单井捕获半径及驻点,否则须利用数值模拟方法或实测法获取相关参数。研究成果为不同类型污染场地选择合适方法获取捕获半径及驻点提供了参考。  相似文献   

9.
垃圾填埋场中硝酸还原酶测定条件优化   总被引:1,自引:1,他引:0  
作为垃圾填埋场中氮素转化的关键酶之一,硝酸还原酶在填埋场氮素转移的过程中起着重要的作用。以生物反应器填埋场中的垃圾样品为研究对象,以土壤酶学测定方法为基础,对填埋场中硝酸还原酶的测定条件进行了优化研究。结果表明,填埋场中硝酸还原酶的最佳测定条件为:垃圾样品的风干温度为30℃,分别加入1%的KNO3溶液2.0 mL和1%的葡萄糖溶液0.5 mL,抽气7 min后,置于20℃的培养箱中培养36 h。在该条件下对填埋场中硝酸还原酶活性进行测定,RSD小于1.66%,说明该分析方法结果可靠,精密度高。  相似文献   

10.
我国生活垃圾含水率高,在填埋场降解过程中产生大量水分,加之由于气候等因素而导致的外源水分渗入,导致填埋场生活垃圾堆体水位过高,严重威胁填埋场安全作业。在实验室模拟的基础上,考察了不同工作方式(水带水、气带水、水带气、气带气)及工况下文丘里真空排水的排水效果,结果表明,改进后的文丘里循环污水动力排水法出水速度快,能在110 s内快速降低水位。在实际填埋场堆体,循环污水动力排水结合竖井排水技术可使作用中心处水位下降1.5 m,有效作用范围15 m。为高水位垃圾堆体的安全运行提供了一种快速、高效、实用的排水技术。  相似文献   

11.
GOAL, SCOPE AND BACKGROUND: [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. METHODS: A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30-40 cm.The CH4 efflux was computed from CO2 efflux and from the ratio CH4/CO2 in the soil gas. Soil gas samples were collected at a depth of 30-40 cm using a metallic probe and 20 cc hypodermic syringes, and later stored in evacuated 10 cc vacutainers for laboratory analysis of bulk composition. The gas sample was introduced in a vacutainer filled with deionized water and displacing the water until the vacutainer was filled with the gas sample in order to avoid air contamination from entering. The surface landfill temperature of the landfill was measured at a depth of 40 cm using a digital thermometer type OMEGA 871A. Landfill gases, CO2 and CH4, were analyzed within 24 hours using a double channel VARIAN micro-GC QUAD CP-2002P, with a 10 meter PORAPLOT-Q column, a TCD detector, and He as a carrier gas. The analysis temperature was 40 degrees C and the injection time was 10 msec. Surface landfill CO2 efflux measurements were performed using a portable NDIR spectrophotometer Licor-800 according to the accumulation chamber method (Chiodini et al. 1996). The data treatment, aimed at drawing the flux map and computing the total gas output, was based on the application of stochastic simulation algorithms provided by the GSLIB program (Deutsch and Journel 1998). RESULTS: Diffuse CH4 and CO2 efflux values range from negligible values up to 7,148 and 30,573 g m(-2) d(-1), respectively. The spatial distribution of the concentration and efflux of CO2, CH4 and soil temperature, show three areas of maximum activity in the landfill, suggesting a non-uniform pattern of diffuse degassing. This correlation between high emissions and concentration of CO2, CH4 and soil temperatures suggests that the areas of higher microbial activity and exothermic reactions are releasing CO2 and CH4 to the atmosphere from the landfill. Taking into consideration the spatial distribution of the CO2 and CH4 efflux values as well as the extension of the landfill, the Non-controlled emission of CO2 and CH4 to the atmosphere by the Lazareto's landfill are of 167 +/- 13.3 and 16 +/- 2.5 t d(-1), respectively. DISCUSSION: The patterns of gas flow within the landfill seem to be affected by boundary materials at the sides. The basalt layers have a low permeability and the gas flow in these areas is extensive. In this area, where a basalt layer does not exist, the flow gas diffuses toward the sea and the flux emissions at the landfill surface are lower. This behavior reflects the possible dissolution of gases into water and the deflection of gases towards the surface at the basalt boundary. The proximity to the sea, the installation of a palm tree garden and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. The introduction of sea water into the landfill and the type of boundary could be defining the superficial gas discharges. CONCLUSIONS: Results from this study indicate that the spatial distribution of Non-controlled emission of CO2 and CH4 at the Lazareto's landfill shows a non-uniform pattern of diffuse degassing. The northeast, central and northwest areas of the Lazareto's landfill are the three areas of high emissions and concentration of CO2 and CH4, and high temperatures. The correlation between high emissions and the concentration of CO2, CH4, and the high temperatures suggest that the areas of higher microbial activity and exothermic reactions are releasing more CO2 and CH4 to the atmosphere from the landfill. A high concentration of CO2 is probably due to the presence of methanotrophic bacteria in the soil atmosphere of the landfill. Patterns of gas flow within the landfill seem to be affected by boundary materials (basalt layers) of low permeability, and side boundaries of the flux emissions at the surface are higher. At the sides of seawater and sediment boundaries, flux emissions at the landfill surface are lower. This behavior reflects a possible dissolution of gases into the water and the deflection of gases towards the surface at the basalt boundary. With this study, we can compare the data obtained in this landfill with other landfills and observe the different levels of emission. The proximity to the sea and the installation of the palm tree garden palms and, as a result, the contribution of water coming from the watering of this garden has reactivated the system. Many landfills worldwide located in similar settings could experience similar gas production processes. RECOMMENDATIONS AND PERSPECTIVES: The need for investigating and monitoring sea water and sediment quality in these landfills is advisable. Concentrations and fluxes of contaminants and their impact in the area should be assessed. With this study we can compare the data obtained in these landfills with other landfills and observe the different levels of emission.  相似文献   

12.
对城市污泥填埋场填埋气集气井收集系统进行了优化研究,考察了城市污泥水平方向的渗透系数(以下简称污泥渗透系数)对集气井影响半径的影响、集气井抽气负压随填埋时间的变化规律、填埋气的经济收集年限。结果表明,当抽气负压为25000~30000Pa时,污泥渗透系数分别取1.04×10-7、2.60×10-8、1.04×10-8m2/(Pa.s)时,集气井的影响半径分别为10.0~11.0、6.0~7.0、5.0~5.5m,过小的污泥渗透系数会严重影响集气井的集气效率,因此污泥渗透系数最好不应小于1.00×10-8m2/(Pa.s);随城市污泥填埋时间的增加,集气井抽气负压总体呈指数型降低趋势,从第8年起,抽气负压由起初的25000Pa降低到5000Pa以下,此时CH4产率约为2kg/(m3.a),到第20年时CH4产率接近于零,故从城市污泥填埋后第8年起,对填埋气继续进行收集的意义已经不大。  相似文献   

13.
边博  周灵君  屈阳  李磊 《环境工程学报》2014,8(7):2991-2996
固化/稳定化污泥进行填埋产生填埋气,产气规律是指导填埋气收集处理系统设计的重要依据。通过构建大型填埋柱模拟填埋实验,研究不同固化材料添加量污泥气液转化规律。实验结果表明,原泥和固化污泥产气规律分为2种类型:前期产气速率呈线性增加,达到最大速率后产气速率呈指数降低。低添加量的固化污泥,产气分3个阶段,分别为产气抑制期、增长期和衰减期。高添加量固化污泥,产气只有一个阶段,产气速率随着时间推移逐渐减小,产气量很小。固化污泥降解过程就是有机质含量降低,气体产量、含水率增加相互转化过程,达到固化材料添加量25%时,水分和气体产生量均很小,降解受到很强抑制,产气150 d左右稳定,产气量很小,无需单独设置气体收集系统。  相似文献   

14.
我国城市中尚有大量非规范生活垃圾填埋场存在,对其进行污染整治消除填埋气导致的环境安全隐患刻不容缓.以重庆某垃圾填埋场为例,研究重庆市主城区的非规范生活垃圾填埋场填埋气的横向迁移问题,在垃圾场周边区域布设36个监测井,对监测井中的填埋气进行分析监测,以填埋气特征组分CH4气体的体积浓度变化研究填埋气的横向迁移规律.结果表明,监测井到填埋场边界的距离为监测井中CH4气体浓度的主要影响因素;垃圾场周边距离填埋场场界50 m以外的区域,填埋气的横向迁移已经相当微弱;但是距离填埋场边界50 m以内区域的填埋气的横向迁移明显,需要在距离填埋场边界50 m范围内采取措施与场内填埋气的导排措施配合,进行填埋气的污染控制.  相似文献   

15.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   

16.

The investigation of municipal solid waste (MSW) treatment in China is rare due to its sensitivity and difficulty in terms of access. We chose Beijing, the capital of China, as an example to identify the characteristics of MSW landfill treatments using a 2-month investigation with 20 participants. MSW landfill treatments account for nearly 70% of the annual MSW disposal in Beijing; the landfill processes are equipped with many kinds of technologies and consume a large amount of energy and produce a variety of contaminants. The cover method (the most obvious difference in landfill tamping) mainly includes high-density polyethylene (HDPE) geomembranes with loess and soil alone (i.e., loess or sandy soil). We investigated the actual conditions of landfills and collected data on leachate and landfill gas (LFG) emissions and energy consumption during 2009–2011. The results indicated that the cover method employed by landfills was related to treatment quantity, operation, and especially landfill location. Early large-scale landfills located in plains were covered with HDPE geomembranes, and newly built landfills covered with soil tended to be equipped with HDPE covers. Using HDPE cover also contributed greatly to LFG production due to its impermeability but had no remarkable effect on leachate yield reduction due to the dry climate in Beijing. The potential was reinforced by the potentials of decrement and reuse. The disposal method of LFG can be optimized, and the power generated by the LFG process can meet the landfill demand. The gray water recycled from the leachate could be used in the landfill process.

  相似文献   

17.
A general methodology is established that permits the characterization and evaluation of the optimum potential of biogas extraction at each vertical well in the sanitary landfill of Asturias, Spain. Twenty wells were chosen from a total of 225 for the study, and the maximum production flow of biogas, which is a result of the degradation of the municipal solid waste deposited within its area of influence, was determined for each well. It was found that this flow varied with time and is characteristic of each extraction well. The maximum extractable flow also was determined as a function of the composition of the biogas needed for its subsequent utilization. The biogas extraction yield in the wells under study varied between approximately 26 and 97%, with a mean recovery value of 82%. The low yields found in certain cases were generally caused by a sealing defect, which leads to excessive incorporation of air into the landfill gas through the surrounding soil or through the extraction shaft, and which make its subsequent utilization difficult.  相似文献   

18.
A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95,300 microg m(-3); 43 microg m(-3)) fell within measured ranges observed in gas from landfills (24,300-180,000 microg m(-3); 20-70 microg m(-3)). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号