首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

2.

The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

3.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   

4.
Spinach plants were grown in soil pots contaminated with increasing mixtures of lead, mercury, cadmium, and nickel salts. Plants in the control soil were grown in the absence of the heavy metals mixture. The elemental distribution of Cd, Ni, Pb, and Hg in the roots and leaves of Spinach (Spinacia Oleracea) was determined in two stages, Stage 1, after five weeks of plant growth and Stage 2, after 10 weeks with full growth. Under the influence of contamination of soil with the heavy metal mixtures, Hg was the most accumulated element in the root of the spinach plant with a concentration of 283 ppm recorded in the highest contaminated soil, followed by Cd at 148 ppm.  相似文献   

5.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

6.
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.  相似文献   

7.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000-12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20-400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   

8.
The effect of arbuscular mycorrhiza on heavy metal uptake and translocation was investigated in Cannabis sativa. Hemp was grown in the presence and absence of 100 microg g-1 Cd and Ni and 300 microg g-1 Cr(VI), and inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. In our experimental condition, hemp growth was reduced in inoculated plants and the reduction was related to the degree of mycorrhization. The percentage of mycorrhizal colonisation was 42% and 9% in plants grown in non-contaminated and contaminated soil, suggesting a significant negative effect of high metal concentrations on plant infection by G. mosseae. Soil pH, metal bioavailability and plant metal uptake were not influenced by mycorrhization. The organ metal concentrations were not statistically different between inoculated and non-inoculated plants, apart from Ni which concentration was significantly higher in stem and leaf of inoculated plants grown in contaminated soil. The distribution of absorbed metals inside plant was related to the soil heavy metal concentrations: in plant grown in non-contaminated soil the greater part of absorbed Cr and Ni was found in shoots and no significant difference was determined between inoculated and non-inoculated plants. On the contrary, plants grown in artificially contaminated soil accumulated most metal in root organ. In this soil, mycorrhization significantly enhanced the translocation of all the three metals from root to shoot. The possibility to increase metal accumulation in shoot is very interesting for phytoextraction purpose, since most high producing biomass plants, such as non-mycorrhized hemp, retain most heavy metals in roots, limiting their application.  相似文献   

9.
Metal (Cu, Zn, Pb, Cd, Ni, Co, and Fe) contamination in sediments from a tropical estuary (Ébrié Lagoon, Ivory Coast) was assessed using pollution indices, multivariate analyses and sediment quality guidelines (SQGs). The results demonstrate that increased input of the studied metals occurred over the past 6 years compared to that from 20 years ago, due to rapid population growth, along with the increase of industrial and agricultural activities in the vicinity of the estuary. Ébrié Lagoon was also found to be one of the most contaminated tropical coastal estuaries. Very high average total organic carbon (TOC) content was found (1.9–3.70%) with significant spatial variation as a result of the influence of anthropogenic activities. This study also found that TOC plays an important role in the distribution of Cu, Zn, Co, and Cd in the Ébrié Lagoon sediments. Moderate to high sediment contamination was observed for Cd and Cu, moderate contamination was observed for Zn and Pb, while low contamination was observed for Ni, Co, and Fe. Cluster analysis (CA) and principal component analysis (PCA) investigation revealed that Cu, Zn, Cd, and Co result mainly from anthropogenic sources while Pb, Ni, and Fe may be of natural origin. The pollution-loading index (PLI) indicated that all of the sites close to wastewater discharges were highly polluted. The sediments are likely to be an occasional threat to aquatic organisms due to Cu, Zn, Pb, Cd, and Ni contents, based on the SQGs approach.  相似文献   

10.
The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

11.
Su DC  Wong JW  Jagadeesan H 《Chemosphere》2004,56(10):957-965
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited.  相似文献   

12.
将零价铁(Fe0)、沸石等活性材料附着在电极上形成可渗透反应层并构成可渗透反应复合电极,采用不同的复合电极对Cd2+、Ni 2+、Pb2+和Cu2+等4种阳离子型重金属污染土壤进行了电动力学修复。研究了不同可渗透反应复合电极对土壤pH的控制效果以及对重金属的去除作用,分析了迁移到复合电极中的重金属形态变化。结果表明,复合电极中添加酸、碱性沸石并适时更换,可有效中和、截留阴阳极电解产生的OH-和H+,避免或减缓土壤酸碱迁移带的形成,防止重金属离子的过早沉淀及土壤过度酸化,极大提高了重金属的去除率。复合电极中Fe0可将迁移进来的重金属离子进行还原稳定,实现重金属污染物的捕获与固定,与迁移到沸石复合电极中的4种重金属不稳定态相比,"Fe0+沸石"复合电极中重金属不稳定态分别下降了61.4、60.5、61.4、57.1百分点。结果还显示,阴极采用"Fe0+沸石"复合电极并适时进行更换,施加1.5V/cm的直流电压修复10d后,土壤中Cd、Ni、Pb、Cu的总去除率分别为44.5%、41.5%、33.5%和36.7%,且进一步延长修复时间和持续更换电极可获得更为理想的修复效果。  相似文献   

13.
A multi-compartment system was used to study the importance of microorganisms for Cd desorption from soil amended with sewage sludge and simultaneous resorption of the mobilized metal by soil constituents. Using this system made it possible to study the participation of microorganisms (Arthrobacter, Trichoderma), montmorillonite, humic acids, and iron oxides in resorption of the released Cd. A filter-sterilized water extract of root-free soil of pH 6.7 (RF) or RF supplemented with glucose (RFG) were used to mobilize Cd from soil at 14 degrees C in 48 h. Cadmium found in those extracts after 48-h incubation was recognized as bioavailable. Changes in pH values and enrichment of soil extracts with organic acids and siderophores resulted from microbial growth. RFG with lower pH and a higher content of ligands mobilized, on average, 40% of Cd introduced with sewage sludge amended soil, whereas RF mobilized only 20% of it. Sequential extractions of Cd at time 0 and Cd remaining in soil showed that RFG had mobilized Cd mostly from the fraction bound with Fe and Mn oxides. Microbial biomass accounted for only up to 3.4% (w/w) of the soil constituents used in the experiments but resorbed 25% of mobilized Cd. The chemical composition of mobilizing soil extracts and the solid-to-mobilizing-extracts volume ratio had a significant effect on the amount of bioavailable Cd. The results of the study suggest that microbial metabolites were involved in Cd mobilization, while the biomass of microorganisms was involved in Cd resorption as a biosorbent.  相似文献   

14.
Complexing agents are frequently used in treatment technologies to remediate soils, sediments and wastes contaminated with toxic metals. The present study reports results that indicate that the rate and extent of soil organic matter (SOM) as represented by dissolved natural organic carbon (DNOC) and polycyclic aromatic hydrocarbon (PAH) desorption from a contaminated soil from a manufactured gas plant (MGP) site can be significantly enhanced with the aid of complexing agents. Desorption of DNOC and PAH compounds was pH dependent, with minimal release occurring at pH 2-3 and maximal release at pH 7-8. At pH-6, chelate solutions were shown to dissolve large amounts of humic substances from the soil compared to controls. The complexing agents mobilized polyvalent metal ions, particularly Fe and Al from the soil. Metal ion chelation may disrupt humic (metal ion)-mineral linkages, resulting in mobilization of SOM and accompanying PAH molecules into the aqueous phase; and/or reduce the degree of cross-linking in the soil organic matter phase, which could accelerate PAH diffusion.  相似文献   

15.

The uptake of an element by a plant is primarily dependent on the plant species, its inherent controls, and the soil quality. Amaranthus hybridus (green herbs) and Amaranthus dubius (red herbs) were chosen to investigate their response and ability to accumulate and tolerate varying levels of elements in their roots and shoots. Red herbs and green herbs were grown in soil pots contaminated with three mixtures of Cd(II), Ni(II), Pb(II), and Hg(II). Plants in the control treatment were grown in the absence of the heavy metals mixture. The distribution of Cd, Ni, Pb, and Hg in the plants (in roots, stems, and leaves) was determined in two stages. Stage 1, after 5 weeks of plant growth and stage 2, full grown after 10 weeks of growth. In the red herbs the Cd concentration in the leaves at stage 2 was 150 ppm and was present in higher concentrations than Ni, Hg, and Pb. At the highest contamination level, in the green herbs plant, Hg was present in the highest concentration in the root, i.e., 336 ppm at stage 1, while the level in the leaves was 7.12 ppm. Both the green and red herbs species showed an affinity for Ni and Cd with moderate to high levels detected in the leaves, respectively.  相似文献   

16.
The present work focuses on the characterization of air quality and the identification of pollutant origin at a former mining site in the city of Lavrion, Greece. A historical metallurgy complex is reused for establishing the Lavrion Technology and Cultural Park (LTCP). A serious problem with this is the severe soil contamination that resulted from intensive mining and metallurgical activities that has taken place in the greater area for the past 3,000 years. Among other consequences, surface-polluted depositions, rich in heavy and toxic metals, are loose and easily wind-eroded, resulting in transportation of particulate matter (PM) in the surrounding atmosphere. On the other hand, there are a number of industries relatively close to the site that are potential sources of PM air pollution. The current study deals with the collection and analysis of PM10 samples with respect to their concentration in heavy metals, such as Pb, Cd, Cu, Fe, Zn, Mn, Cr, and Ni. Though not a heavy metal, As also is included. Furthermore, the source of these elements is verified using statistical correlation and by calculating enrichment factors (EFs), considering that some substances are certainly of contaminated soil origin. Results show that PM10 and element concentrations are relatively low during winter but significantly increase during summer. Fe, Pb, Zn, Mn, and Cu may be considered of contaminated soil origin, while As, Ni, Cd, and Cr are very much enriched with respect to contaminated soil, indicating another possible source attributed to the adjacent industrial plants.  相似文献   

17.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   


18.
Inoculation of plants with microorganisms may reduce the toxicity of heavy metals to plants in contaminated soils. In this study, we have shown that the plant growth promoting bacteria Methylobacterium oryzae strain CBMB20 and Burkholderia sp. strain CBMB40 from rice reduce the toxicity of Ni and Cd in tomato and promote plant growth under gnotobiotic and pot culture experiments. The bacterial strains bound considerable amounts of Ni(II) and Cd(II) in their growing and resting cells and showed growth in the presence of NiCl2 and CdCl2. In gnotobiotic assay, inoculation with the bacterial strains reduced the ethylene emission and increased the tolerance index of the seedlings against different concentrations of NiCl2/CdCl2. In pot experiments carried out with non-polluted, Ni and Cd supplemented Wonjo-Mix bed soil, the results clearly demonstrated reduction in the accumulations of Ni(II) and Cd(II) in roots and shoots, with significant increase in the plant growth attributes with bacterial inoculations compared to untreated control. Strain CBMB20 performed better than CBMB40 in reducing the heavy metal accumulations in plants. Our results suggest conclusively, that protection against the heavy metals toxicity is rendered by these bacterial strains by reducing their uptake and further translocation to shoots in plants and promote the plant growth by other PGP characteristics.  相似文献   

19.
In this study the elemental distribution of selected essential (Ca, Mg, Al, Mn, Cu, Fe, Co, Cr, Zn, Ni and Se) and the non-essential (Pb, Hg and As) elements were determined in the bulb and peel of Amadumbe (Colocasia esculenta) samples from eight different sites in KwaZulu-Natal, South Africa. The concentration of Se and As in the soil and in the Amadumbe bulbs were below the detection limit of 0.09 μg g?1. The total and bioavailable concentrations of the elements in conjunction with pH, soil organic matter (SOM) and cation exchange capacity (CEC) were determined in the soil samples from the eight sites. Statistical analysis was done to evaluate the impact of soil quality parameters on the chemical composition of the Amadumbe root. The results show accumulation or exclusion of certain elements by the bulb as evidenced by the noticeable increase or decrease of the concentrations of elements, respectively. Ca and Mg were found to be major elements in the range (2000–12000 μg g?1), whilst Mn, Zn, Fe and Al were found to be minor elements in the range (20–400 μg g?1). A general trend observed was that the plant favours the absorption of Zn over Cu. A positive correlation between Mg & Ca, Cu & Fe and Co & Ni was also observed. Statistical analysis revealed that the plant tended to accumulate Mg, Ca, Co, Cr and Pb whilst it excluded Hg and Fe, to a lesser extent.  相似文献   

20.
Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer + rapeseed residue (N70 + R), 30% mineral N fertilizer + rapeseed residue (N30 + R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70 + R and N30 + R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号