首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
接种普通活性污泥,以人工配制高氨废水为基质。在SBR中通过逐步提高进水氨氮浓度并控制低溶解氧的方法,经过58 d连续运行使出水NO-2-N/NH+4-N维持在0.88~1.25,成功实现了半亚硝化的启动。通过对典型周期内氮素转化及N2O释放特性的考察表明:周期内DO浓度基本维持在0.4 mg/L以下,NH+4-N浓度由410.46 mg/L下降至257.26mg/L。NO-2-N浓度由162.90 mg/L升高至295.80 mg/L,NO-3-N浓度由27.01 mg/L逐渐升高至50.16 mg/L。p H先由7.94升高到8.01后缓慢降至7.96,溶解性N2O浓度基本维持在0.07 mg/L。初期(0~20 min)气态N2O浓度由0.13 mg/L迅速升至1.13 mg/L后急剧下降到0.34 mg/L,随后缓慢升至0.54 mg/L。初期N2O的平均释放速率高达0.84 mg/min,这主要是上周期沉淀阶段产生并附着在污泥中的N2O受曝气吹脱所致。  相似文献   

2.
以秸秆等农业废物为主要原料,添加硝化抑制剂双氰胺(dicyandiamide,DCD)进行静态好氧堆肥实验,设置相同堆肥条件不添加DCD作为空白对照,分析了堆肥过程中各个时期不同处理的p H值、NH+4-N浓度、NO-3-N浓度和水溶性有机碳(WSC)理化参数的变化趋势,并应用定量聚合酶链式反应(real-time PCR)技术对参与反硝化过程的功能基因(nir K、nir S和nos Z)丰度随时间的变化情况进行了研究。结果表明,添加DCD明显地改变了堆肥过程的氮素转化,两组堆肥样品的p H值、NH+4-N浓度、NO-3-N浓度有显著差异(p0.001),但是对WSC的下降过程没有明显影响。DCD对nir K基因的抑制效果最显著,同时nir S和nos Z基因因为理化参数的改变而受到了间接影响。  相似文献   

3.
采用具有实时监测和调控pH功能的连续流反应器,通过人工模拟废水研究了铵盐的形态及浓度对氧氨氧化(anoxic ammonium oxidation,ANAMMOX)菌活性的影响及抑制规律。结果表明,在进水NH+4-N、NO-2-N浓度分别为990.4mg/L和121.9 mg/L的条件下,经过38 h运行反应器内NO-2-N浓度积累至85.60 mg/L,ANAMMOX菌活性被抑制了70.2%。通过pH的调控,使得铵盐的形态发生转化,出水NH+4-N和NO-2-N出现同步下降,ANAMMOX菌活性得到恢复,证实了游离氨(FA)才是ANAMMOX菌的真正抑制物。同时,随着进水NH+4-N浓度由1 000 mg/L增加到5 000 mg/L,厌氧氨氧化菌活性达到半抑抑所需的抑制时间由18 h缩短到了7 h,抑制时所对应的FA浓度不同。结果表明,FA对ANAMMOX菌的抑制水平与进水NH+4-N浓度、T、pH和t存在一定的函数关系。  相似文献   

4.
为探讨Cu2+、p H和流速对固定化斜生栅藻去除畜禽废水中NH+4-N、TP效果的影响,在实验室条件下模拟实际污水处理过程,并采用正交实验方案对结果进行分析。结果表明低质量浓度Cu2+(0~0.05 mg/L)改善藻的净化效果,高质量浓度Cu2+(0.50~5.00 mg/L)抑制藻的净化效果;在p H较高的条件下(p H=9),固定化斜生栅藻的净化效果明显提高;流速对结果没有明显影响。通过正交实验,得出固定化斜生栅藻去除畜禽废水中NH+4-N、TP的优化条件如下:Cu2+质量浓度为0.05 mg/L,p H为9,流速为0.3 m/s。此时NH+4-N去除率为96.11%,TP去除率为97.53%。  相似文献   

5.
IC反应器厌氧氨氧化启动与运行特性研究   总被引:5,自引:0,他引:5  
采用一套有效容积为20 L的IC反应器,接种啤酒废水厌氧处理池污泥,保持反应器进水NH+4-N浓度为120 mg/L,NO-2-N浓度为150 mg/L,在温度为30±1 ℃的条件下,对ANAMMOX反应过程的启动和运行特性进行了研究.结果表明反应器的启动经历了污泥低负荷驯化期、负荷提高期和高负荷运行期3个阶段;在反应器运行到第130 d,反应器启动成功;NH+4-N和NO-2-N的去除率分别约82.1%和94.5%;去除的NH+4-N和NO-2-N及生成的NO-3-N三者之间的比值为11.160.3;在反应器中形成了粒径为1~2 mm的颗粒污泥.  相似文献   

6.
以处理水产养殖水体中的含氮化合物为目的,采用气提反应器,建立以聚己内酯(polycaprolactone,PCL)为碳源和生物膜载体的同时硝化反硝化(simultaneous nitrification and denitrification,SND)系统(PCL-SND),研究其启动过程及脱氮效果以及水力停留时间(hydraulic retention time,HRT)对PCL-SND系统脱氮效果的影响。结果表明,在PCL填充率为10%,HRT为24 h,进水氨氮(NH+4-N)浓度为10 mg/L,硝态氮(NO-3-N)浓度为50 mg/L的条件下,系统运行45 d达到稳定状态,NH+4-N和TN的去除率分别为(76.55±0.98)%和(56.85±2.21)%。HRT对PCL-SND系统脱氮效果的研究表明,一定范围内,TN去除率随着HRT的减小而下降,出水NO-3-N浓度随着HRT的减小而升高,当HRT8 h,NH+4-N去除率基本稳定(85%~89%),HRT为24 h时,脱氮效果最好,TN和NH+4-N去除率分别为(68.56±1.64)%和(87.75±2.78)%,出水NO-3-N浓度(15.72±1.46)mg/L。p H和总碱度均随HRT的减小而下降,生物量却随HRT的减小而增大。  相似文献   

7.
DO浓度对间歇曝气单级自养脱氮系统N2O排放的影响   总被引:1,自引:0,他引:1  
以单级自养脱氮系统为研究对象,采用有效容积为15 L的SBBR反应器,系统进水NH+4-N浓度约为360 mg/L,控制温度为(30±2)℃,采用间歇曝气方式运行,曝气段DO浓度从2.4~2.6 mg/L逐渐下降到0.9~1.1 mg/L,研究了单级自养脱氮系统的脱氮性能与N2O排放情况。结果表明,反应器曝气段DO浓度从2.4~2.6 mg/L下降到0.9~1.1mg/L,系统TN去除率均达到80%,但在相同运行时间内的TN去除率依次降低,NH+4-N平均反应速率从0.19 mg/(L·min)降低至0.05 mg/(L·min),NO-3-N累计产生量稳定于14.9~16.5 mg/L,NO-2-N浓度在反应器内未产生明显的积累。随着曝气段DO浓度的下降,最大N2O释放速率逐渐降低,N2O累计释放量从73.8 mg下降到61.0 mg,N2O转化率介于2.4%~2.9%。  相似文献   

8.
以乙酸钠作为碳源,给阴阳极外加2V的直流电压,考察了不同低C/N对连续运行的生物膜-电极反应器反硝化的影响。结果表明,当C/N从1.5∶1减少到0.8∶1时,生物膜-电极反应器NO-3-N去除率从99.5%下降至64.1%,出水NO-3-N的浓度从0.27mg/L增加到17.96mg/L,出水NO-2-N的浓度从0.24mg/L增加到2.6mg/L,出水NH+4-N浓度从4.93mg/L下降至3.35mg/L。当C/N为1.5∶1时,生物膜-电极反应器的自养反硝化率仅为8.0%,当C/N降至1∶1时,自养反硝化率增加至30.4%,然而,当C/N从1∶1进一步降低至0.8∶1时,自养反硝化率却从30.4%下降至21.8%。各C/N条件下,生物膜-电极反应器出水的SCOD浓度均高于对照生物膜反应器。生物膜-电极反应器的自养反硝化率与其出水pH呈正相关。  相似文献   

9.
以西安某人工湖为研究对象,在湖体中布设9个采样点,并且在2013.12—2014.1期间采样3次,对其中TN、TP、COD、NH+4-N和NO-3-N等污染物分布及其与叶绿素a浓度的相关性进行了相应的研究。结果表明,湖体中NH+4-N、NO-3-N、TN、TP、COD和叶绿素a的浓度分别为:0.8~1.7 mg/L、1.1~2.9 mg/L、2.5~4.8 mg/L、0.04~0.14 mg/L、20~24.8 mg/L和0.82~2.14μg/L。人工湖进、出水口污染物浓度整体较低,在靠近车流量较大的3座交通桥的采样点4、5和8采样后所测各项污染指标均较其他点高,由此说明在研究期间交通桥可能成为此人工湖的点污染源。污染物相关性分析结果显示,在冬季低温条件下(4~6℃)叶绿素a与TN、TP、NH+4-N、NO-3-N的相关系数分别为:R2=0.55~0.75,P0.05;R2=0.4~0.65,P0.05;R2=0.48~0.62,P0.05;R2=0.15~0.44,P0.05;COD和浊度呈极显著相关:R2=0.67~0.85,P0.01。  相似文献   

10.
研究不同曝气方式下亚硝化的实现以及基质浓度、曝气频率和温度对NO-2-N积累效果的影响。以实际污泥脱水液为研究对象,控制进水NH+4-N浓度在50~80 mg/L范围内,温度为27℃,pH值为7.8~8.2,DO浓度为0.5~1.0mg/L,分别采用连续曝气和间歇曝气2种方式启动SBR亚硝化反应器,并考察了在不同基质浓度、曝气频率和温度条件下NO-2-N累积情况。实验研究结果表明,经过40 d左右的运行,在2种不同曝气方式下SBR均成功实现了亚硝化,稳定运行阶段,NO-2-N积累率分别达到95%和85%。经SEM扫描电镜观察发现,在驯化成熟的活性污泥中,亚硝化细菌多呈球状和杆状,大小不同,外形饱满。当进水氨氮浓度小于200 mg/L,曝气频率为曝气15 min/停曝15 min,温度为27℃时,NO-2-N积累效果最佳,平均积累率可达90%以上。间歇曝气可以有效促进亚硝化细菌富集,有利于实现较高浓度的NO-2-N积累。基质浓度、曝气频率和温度对NO-2-N积累效果的影响显著。  相似文献   

11.
采用实验模拟装置考察油酸包覆型纳米铁、反硝化细菌及其组合方法处理地下水NO-3-N效果与反应产物的变化特征。结果表明,在模拟地下水溶解氧(0.50 mg/L)、温度(15℃)和黑暗环境中,2 g油酸包覆型纳米铁与70 mg/L NO-3-N反应,11 d后NO-3-N去除率为86.4%,其中74.7%的还原产物为NH+4-N,1.7%为NO-2-N,N2生成量仅占10%;反硝化细菌体系中,反应6 d后NO-3-N去除率为78.6%,此时未检测到NH+4-N,而NO-2-N达到最大值,为60.1%,仅有18.5%的N2生成;在油酸包覆型纳米铁-反硝化细菌耦合体系中,6 d后NO-3-N去除率达到80.3%,其中NH+4-N占17.6%,NO-2-N为30.1%,N2为32.6%。因此,比较3种材料对NO-3-N降解效果及产物得出,在地下水环境中,油酸包覆型纳米铁-反硝化细菌组合方法对地下水NO-3-N的去除效果最好,产物主要是N2,减少了还原产物NH+4-N对地下水造成的二次污染。  相似文献   

12.
针对实际海水养殖废水低碳高氮的特点,采用间歇式活性污泥法(SBR)和好氧活性污泥添加硅藻土载体的方式,考察硅藻土载体和活性污泥共同作用下的好氧曝气系统对海水养殖废水中氨态氮(NH+4-N)、亚硝酸态氮(NO-2-N)和化学耗氧量(COD)的去除效果,以及对污泥沉降性能和硝化细菌特征的影响。实验结果表明,常温条件下,溶解氧(DO)≥4.5mg/L,p H控制在7.0~8.0,HRT为11 h,沉降时间10 min,反应器可以处理NH+4-N浓度在50 mg/L左右的海水养殖废水,NH+4-N和COD去除率分别达到98.93%左右和76.62%以上,NO-2-N出水浓度低于0.028 mg/L。载体污泥颗粒照片和扫描电镜结果表明,添加硅藻土载体内核后,颗粒污泥的成熟期缩短,颗粒的稳固度和沉降性能提高。在系统启动成功稳定运行后,通过FISH分析表明,在氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)成为优势菌群后,AOB大约占总菌群的33.5%,并且AOB与NOB菌群数量约为1∶1.33,AOB和NOB两大类菌群之和约占总菌群的77.2%,成为系统中优势菌群。  相似文献   

13.
在静态水培实验条件下,对不同浓度垃圾渗滤液条件下凤眼莲的生长状况及其净化效果进行了研究。结果表明,在高浓度(COD 3 546.7 mg/L、NH3-N 527.5 mg/L、TP 8.02 mg/L)垃圾渗滤液条件下(HCL)凤眼莲全部被毒害致死,在中浓度(COD 1 233.3 mg/L、NH3-N 182.9 mg/L、TP 2.83 mg/L)垃圾渗滤液条件下(MCL)生长状况差,生物量减少为实验前的32.6%。在低浓度(COD 660.0 mg/L、NH3-N 99.7 mg/L、TP 1.59 mg/L)垃圾渗滤液条件下(LCL)能够正常生长,且对低浓度垃圾渗滤液有较好的净化效果。24 d后COD、NH3-N和TP的去除率分别为85.9%,99.8%和84.8%。COD与NH3-N均达到《生活垃圾填埋场污染控制标准(GB16889-2008)》排放标准,TP达到《地表水环境质量标准(GB 3838-2002)》Ⅳ类排放标准。  相似文献   

14.
在静态水培实验条件下,对不同浓度垃圾渗滤液条件下凤眼莲的生长状况及其净化效果进行了研究。结果表明,在高浓度(COD 3 546.7 mg/L、NH3-N 527.5 mg/L、TP 8.02 mg/L)垃圾渗滤液条件下(HCL)凤眼莲全部被毒害致死,在中浓度(COD 1 233.3 mg/L、NH3-N 182.9 mg/L、TP 2.83 mg/L)垃圾渗滤液条件下(MCL)生长状况差,生物量减少为实验前的32.6%。在低浓度(COD 660.0 mg/L、NH3-N 99.7 mg/L、TP 1.59 mg/L)垃圾渗滤液条件下(LCL)能够正常生长,且对低浓度垃圾渗滤液有较好的净化效果。24 d后COD、NH3-N和TP的去除率分别为85.9%,99.8%和84.8%。COD与NH3-N均达到《生活垃圾填埋场污染控制标准(GB16889-2008)》排放标准,TP达到《地表水环境质量标准(GB 3838-2002)》Ⅳ类排放标准。  相似文献   

15.
在滇池水域选择3个实验点,分别是外草海、老干鱼塘和龙门村,构建围栏控制性种养凤眼莲,用于吸收富集水体氮磷。于凤眼莲旺盛生长期内(2010年8月),每隔3小时监测种养区与对照区水体理化指标,包括气温、水温、p H、溶解氧(DO)、总氮(TN)、氨氮(NH+4-N)、硝氮(NO-3-N)、总磷(TP)和磷酸根(PO3-4-P),分析24 h内水体理化指标的变化规律。结果显示,(1)昼夜变化使得3个实验点水体p H和DO白天高于夜晚。由于气泡浮力机制影响,龙门村水体Chl-a浓度在中午12:00达到最高,在日落后21:00又出现一个高值;(2)外草海种养区NO-3-N浓度与TN浓度呈显著的正相关关系,与NH+4-N浓度呈显著的负相关关系,推测是因为凤眼莲可以促进富营养化水体的硝化、反硝化、硝化-反硝化反应的耦合过程。老干鱼塘水体由于p H过高,使得水体NH+4-N浓度明显高于NO-3-N浓度;(3)昼夜变化对水体氮、磷浓度并未表现出显著的影响。在野外大水面种养相对小面积的凤眼莲,种养水域内部的氮磷浓度均高于相对较远的对照水域;规模化种养凤眼莲方可有效降低整个水体的氮磷浓度。  相似文献   

16.
水力负荷对厌氧氨氧化反应器运行影响的研究   总被引:4,自引:0,他引:4  
采用一套有效容积为4.46 L的UASB-ANAMMOX反应器,通过对水力负荷进行3个阶段的调节,研究水力停留时间对ANAMMOX反应器处理效果的影响.3个阶段的水力负荷分别为0.20~0.25、0.38~0.43、0.16~0.20 L/(Ld).在试验过程中,水力负荷的冲击对NH 4-N、NO-2-N的去除率影响明显.其中水力负荷为0.20~0.25 L/(L·d)时,NH 4-N、NO-2-N去除率都能达到99%以上;当水力负荷为0.38~0.43 L/(L·d)时,NH 4-N、NO-2-N去除率分别降至64%和62%;当水力负荷为0.16~0.20 L/(L·d)时,NH 4-N、NO-2-N去除率立刻分别回升至94%和97%.ANAMMOX反应过程中,NO-2-N和NH 4-N的去除量比值基本在1.3∶1.0左右变化,ANAMMOX反应的优势菌种代谢在运行过程中会将一部分NO-2-N转化为NO-3-N,水力负荷的改变对NO-3-N的出水浓度影响不大;但NO-3-N日生成量与水力负荷的大小成正比.试验表明,UASB-ANAMMOX反应器对水力负荷冲击有较强的抵抗力,但是仍会造成一定量的ANAMMOX反应的优势菌流失,使该反应器在短时间内不能恢复最佳的去除效果.  相似文献   

17.
异养硝化-好氧反硝化菌ADN-42的脱氮特性   总被引:3,自引:0,他引:3  
从大连海域典型繁茂膜海绵(Hymeniacidon perleve)中筛选出1株耐盐异养硝化-好氧反硝化菌,通过形态观察、生理生化实验和16S rRNA基因序列分析,确定其为假单胞菌属(Pseudomonas),命名为ADN-42。其异养硝化-好氧反硝化条件为氯化铵为氮源,柠檬酸三钠为碳源,温度30℃,C/N值为12,摇床转速150 r/min,NH+4-N初始浓度约300 mg/L,盐度为40 g/L Na Cl,在此条件下菌株84 h时NH+4-N去除率为75.4%,无硝态氮产生,亚硝态氮最大积累量为8.3 mg/L;将菌株投加到NH+4-N和NO-2-N混合体系中,混合系统比仅以NH+4-N为氮源的体系的NH+4-N去除速率提高了12.7%;研究结果表明Pseudomonas sp.ADN-42可能是一株有着良好应用前景的高效耐盐异养硝化-好氧反硝化菌。  相似文献   

18.
可用有机碳源不足是限制低碳高硝氮废水反硝化脱氮效能的关键因素。采用4种常见花卉(康乃馨、玫瑰、百合、紫罗兰)的废弃秸秆作为有机碳源投加至垂直布设于潜流人工湿地前端的穿孔管中,考察并对比各系统对低碳高硝氮废水的脱硝效能及其氮转化情况。结果表明,投加花卉秸秆显著增强了人工湿地的NO-3-N去除效能,其中,康乃馨秸秆强化脱NO-3-N效能最佳,实验期间平均去除率为51.8%和每批次去除量873.4 mg;玫瑰秸秆最差,平均去除率为31.1%和每批次去除量535.0 mg。NO-3-N去除率均随运行时间的延长而逐渐下降。伴随NO-3-N的去除,系统内产生了一定量的NO-2-N和NH+4-N,其浓度均与NO-3-N去除率呈显著正相关(p0.05)。此外,花卉秸秆的投加使系统运行初期出水中的有机物含量偏高。以玫瑰秸秆为外加碳源产生的负效应最低。综合考虑碳源投加的正负效应,康乃馨秸秆为本实验条件下的最佳碳源,玫瑰秸秆则应增加投加量以达到更好的应用效果。  相似文献   

19.
张华  何闪英 《环境工程学报》2014,8(5):1939-1943
通过控制生物膜系统溶解氧(DO)浓度分别为0.5~1 mg/L(Ⅰ)、1~2 mg/L(Ⅱ)、2~3 mg/L(Ⅲ),研究在微污染城市河道水体中实现短程硝化反硝化的可行性。研究表明,在3个系统中,化学需氧量(COD)、氨氮(NH+4-N)和总氮(TN)的平均去除率分别稳定在62.3%、38.6%和38.2%(工况Ⅰ),65.5%、59.4%和28.2%(工况Ⅱ),66.1%、77.3%和22.8%(工况Ⅲ)。系统中各形态氮素含量及其变化情况分析表明,在具有一定NH+4-N去除率前提下,控制体系处于低DO浓度(1 mg/L),亚硝酸盐氧化菌(NOB)生长及活性受到抑制,NO-2-N明显累积,经反硝化作用直接转化为氮气(N2),实现了微污染城市河道水体中的短程硝化反硝化。  相似文献   

20.
通过考察脉冲式SBR法处理城镇生活污水时有机物降解、硝化和反硝化反应中DO、氧化还原电位(ORP)及pH的变化规律,建立了这些控制参数与有机物去除、硝化与反硝化反应过程中主要污染物指标间的相关关系.在此基础上,建立脉冲式SBR法深度脱氮的模糊控制系统,更加有效地控制脉冲式SBR法多段进水的运行方式,达到深度脱氮的目的,并尽可能降低运行成本.当进水COD在130.0~243.6 mg/L、NH 4-N在55.98~76.40 mg/L时,在原水中反硝化碳源充足情况下,脉冲式SBR法反硝化结束时最终出水COD低于40 mg/L,NH 4-N低于1.0 mg/L,TN低于3·0 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号