首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
好氧颗粒污泥形成与运行稳定性的影响因素试验分析   总被引:2,自引:0,他引:2  
用普通絮状污泥作为接种污泥,用SBR作为反应器,分析了高径比、污泥容积负荷以及营养比例(BOD5:N:P)等因素对好氧颗粒污泥形成的影响.试验结果表明,高径比对好氧颗粒污泥的形成有直接关系;污泥容积负荷越高、碳氮比正常、磷源缺乏越易诱导好氧颗粒污泥的骨架丝状菌的生长,可以促进好氧颗粒污泥的提前形成,但是越易引起粘性膨胀的出现.在高径比为38;6,污泥容积负荷为1.67 kg/(m3·d).BOD5:N:P为100:5:1,沉淀时同为2 h时,其好氧颗粒污泥形成时间为17个周期,成熟时间为23个周期,粒径为2~3 mm,平均污泥沉降比(SV)为29.0%,对模拟废水COD的平均去除率达94.3%.  相似文献   

2.
以絮状活性污泥为接种污泥,采用人工配制的模拟生活污水,分别在气提式序批反应器(SBAR)和序批式活性污泥反应器(SBR)中成功地培养出了成熟的好氧颗粒污泥.SBAR和SBR中的好氧颗粒污泥都具有稳定的基本形态结构,其微生物主要由杆菌和球菌组成,对COD的去除率可达到93%左右.对NH+4-N的去除率可达到98%以上.SBAR中好氧颗粒污泥的粒径主要分布、污泥体积指数(SVI)、比耗氧速率(SOUR)、TN去除率和TP去除率分别为0.45~2.00 mm、19.97 mL/g、47.68 g/(kg·h)、82%和65%;而SBR中好氧颗粒污泥的粒径主要分布、SVI、SOUR、TN去除率和TP去除率分别为0.18~1.00 mm、29.12 mL/g、43.21 g/(kg·h)、58%和50%.相对而言,SBAR更有利于好氧颗粒污泥的培养和运行.  相似文献   

3.
针对实际海水养殖废水低碳高氮的特点,采用间歇式活性污泥法(SBR)和好氧活性污泥添加硅藻土载体的方式,考察硅藻土载体和活性污泥共同作用下的好氧曝气系统对海水养殖废水中氨态氮(NH+4-N)、亚硝酸态氮(NO-2-N)和化学耗氧量(COD)的去除效果,以及对污泥沉降性能和硝化细菌特征的影响。实验结果表明,常温条件下,溶解氧(DO)≥4.5mg/L,p H控制在7.0~8.0,HRT为11 h,沉降时间10 min,反应器可以处理NH+4-N浓度在50 mg/L左右的海水养殖废水,NH+4-N和COD去除率分别达到98.93%左右和76.62%以上,NO-2-N出水浓度低于0.028 mg/L。载体污泥颗粒照片和扫描电镜结果表明,添加硅藻土载体内核后,颗粒污泥的成熟期缩短,颗粒的稳固度和沉降性能提高。在系统启动成功稳定运行后,通过FISH分析表明,在氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)成为优势菌群后,AOB大约占总菌群的33.5%,并且AOB与NOB菌群数量约为1∶1.33,AOB和NOB两大类菌群之和约占总菌群的77.2%,成为系统中优势菌群。  相似文献   

4.
ABR-好氧颗粒污泥处理黄连素废水的启动研究   总被引:1,自引:0,他引:1  
实验研究了ABR-好氧颗粒污泥组合工艺处理黄连素制药废水的启动运行,通过分析发现,ABR装置在HRT为4 d,黄连素浓度为50 mg/L的运行方式下成功启动,反应器运行稳定后每个格室MLSS平均值分别为25 840、21 560、27 500和11 200 mg/L。以ABR出水为营养物,成功培养出粒径在2~10 mm,沉降速率为104~137 m/h,沉降性能优良的好氧颗粒污泥。该组合工艺在启动实验的末期,进水COD浓度为3 000~4 000 mg/L左右,出水COD浓度到达168.4~271mg/L,系统总的去除率保持在90%~95%之间,表明ABR-好氧颗粒污泥组合工艺能够有效地处理黄连素制药废水。  相似文献   

5.
好氧反硝化菌强化序批式活性污泥反应器处理生活污水   总被引:2,自引:0,他引:2  
研究了好氧反硝化菌强化序批式活性污泥反应器(SBR1)处理生活污水的性能,同时以只接种相同量普通活性污泥的序批式活性污泥反应器(SBR2)作为对照组。结果表明:(1)反应前21天启动期间,SBR1对污水COD、NH+4-N和TN的平均去除率分别可达到77.79%、94.96%、63.21%,对COD和TN的平均去除率明显好于SBR2。(2)当C/N为4∶1(质量比,下同)和6∶1时,SBR1对COD和TN的去除率明显高于SBR2;当C/N为8∶1时,SBR1对COD和TN的去除效果达到最好,对两者的平均去除率分别达到85.31%和61.14%;当C/N为10∶1和12∶1时,两反应器对废水COD去除效果的差距缩小,但SBR1对TN的平均去除率分别为58.98%和51.64%,明显高于SBR2。(3)SBR1投加的好氧反硝化菌适应较低的C/N环境,且能在生活污水中快速增殖,保持了很好的污泥悬浮液浓度和沉降性能,在35d形成成熟的颗粒污泥。  相似文献   

6.
颗粒化序列间歇式活性污泥反应器工艺处理化粪池污水   总被引:1,自引:1,他引:0  
在序列间歇式活性污泥反应器(SBR)中成功培养出适应化粪池污水水质的好氧颗粒污泥.并将其应用于化粪池污水的处理.在好氧颗粒污泥培养的第15天左右,SBR中开始出现细小的颗粒,然后微生物在其上繁殖生长使颗粒逐渐增大而成熟;在第24天时,SBR中絮状活性污泥已基本实现了颗粒化.培养出的好氧颗粒污泥对化粪池污水有稳定的处理效果,在进水完全为化粪池污水时,COD、NH_4~+-N、TN的平均去除率分别为77%、61%、47%.但是,由于化粪池污水COD较低,因此无法维持较高的生物量,在后期的稳定运行过程中MLSS始终维持在2 500 mg/L左右.好氧颗粒污泥的同步硝化反硝化作用是其稳定脱氮的保证.  相似文献   

7.
采用中试规模的厌氧-好氧交替式颗粒污泥SBR处理实际城市污水,研究了好氧颗粒污泥的培养过程、处理效果及颗粒污泥的特性。以絮状活性污泥为接种污泥,经过72 d的培养后,反应器内出现小粒径颗粒污泥。在随后的230 d运行实验中,通过调整曝气阶段的溶解氧浓度、排水体积交换率以及周期运行方式,使得反应器中颗粒污泥粒径和比例逐渐增加。在最佳工况运行条件下,反应器中污泥浓度为3 000~4 000 mg/L,SVI值为45~55 mL/g,对COD、氨氮、总氮和总磷的平均去除率分别为91.63%、74.02%、68.42%和96.41%,达到了同时脱氮除磷的效果。  相似文献   

8.
在序批式活性污泥反应器(SBR)中接种生物絮体,利用水产循环养殖废水培养好氧颗粒污泥。在溶解氧为6.4~7.1mg/L的条件下,培养出的好氧颗粒污泥平均粒径为150μm,SBR内挥发性悬浮固体(VSS)稳定在16.33~17.47g/L,总悬浮固体(TSS)稳定在17.25~18.57g/L,好氧颗粒污泥对水产循环养殖废水具有较好的处理效果,硝态氮、溶解性有机碳、溶解性磷酸盐去除率均在90%以上。好氧颗粒污泥中粗蛋白和粗脂肪含量均高于接种生物絮体。生物絮体内松散结合胞外聚合物(LB-EPS)含量比好氧颗粒污泥高,而紧密结合胞外聚合物(TB-EPS)含量比好氧颗粒污泥低,生物絮体与好氧颗粒污泥中胞外聚合物(EPS)的主要区别成分是多糖。  相似文献   

9.
分别采用水解酸化与好氧(SBR)、厌氧(UASB)与好氧(SBR)工艺对涤纶短纤维废水的生物降解性能进行研究。水解酸化与好氧工艺在进水COD为1 900 mg/L的时候,去除率在80%左右。采用UASB-SBR工艺,进水COD为2700 mg/L时,COD去除率可以达到96%,出水COD〈100 mg/L。实验研究表明,涤纶短纤维废水更适合采用UASB-SBR工艺来处理,并且能够取得较好的效果。  相似文献   

10.
好氧颗粒污泥处理高浓度氨氮废水的研究   总被引:6,自引:0,他引:6  
在不同接种源污泥颗粒化过程中污泥理化性状对比研究的基础上,采用成熟好氧颗粒污泥处理高浓度氨氮废水,对其脱氮行为以及不同C/N条件下好氧颗粒污泥微生物的比耗氧速率、好氧颗粒污泥对氨氮的比降解速率随时间的变化等进行了研究.实验结果表明,在进水氨氮质量浓度较高(480 mg/L)、温度30℃左右的条件下,稳定运行15 d,氨氮的去除率维持在85%左右;进水氨氮的浓度越高,随着微生物对环境的逐渐适应,硝化菌的活性也逐步增加;随着进水氨氮浓度的提高,好氧颗粒污泥对氨氮的比降解速率也逐渐上升.  相似文献   

11.
以低浓度城市污水作为原水,絮状污泥作为接种污泥,分别采用序批式生物反应器(SBR)与气升式间歇反应器(SBAR)培养好氧颗粒污泥.分别考察2种工艺中好氧污泥颗粒化过程中的污泥特性以及对污染物的去除效果,结果表明2种工艺均成功培养出稳定的好氧颗粒污泥.SBR工艺中好氧颗粒污泥的污泥容积指数(SVI)、挥发性组分所占比例(...  相似文献   

12.
为研究高负荷条件下好氧颗粒污泥的形成过程、同步脱氮除碳效果和微生物群落结构特点,构建了一个序批式反应器(sequencing batch reactor,SBR)。结果表明,C/N=40进水条件下能够完成颗粒化,成熟后的好氧颗粒污泥呈表面光滑结构紧实的椭球体。随着颗粒粒径增大,其比好氧速率提高、含水率下降、沉降性能变好、生物量增加。颗粒形成过程产生的胞外聚合物(extracellular polymeric substances,EPS)先增加后受水质冲击减少,之后又明显提高,整个过程中多糖与蛋白质之比(PS/PN)持续下降,EPS中的蛋白质对颗粒的形成影响较大。SBR中的好氧颗粒污泥能够同时高效去除进水中的COD、N H_4~+-N和TN,去除率分别为94%、96%和93%,反应器的反硝化性能良好。C/N=40时,采用MiSeq高通量测序方法对成熟好氧颗粒污泥中的群落结构进行研究,发现存在促进颗粒化的优势菌门(包括Saccharibacteria、Proteobacteria、Bacteroidetes、Actinobacteria、Firmicutes和Chloroflexi)。同时,在颗粒污泥中,异养硝化、好氧/缺氧反硝化菌属丰度较高,表明异养硝化-好氧/缺氧反硝化菌属可能存在于好氧颗粒污泥中。  相似文献   

13.
采用序批式活性污泥反应器(SBR)进行好氧颗粒污泥(AGS)培养,比较仅接种普通絮状污泥培养(R1)与接种普通絮状污泥及部分厌氧颗粒污泥培养(R2)下污泥颗粒化进程、污泥特性及污染物去除特性。结果表明,通过逐渐缩短SBR沉淀时间、提高有机负荷,R1、R2分别在17、23d时出现乳白色颗粒,颗粒粒径较小(0.1~0.5mm),颗粒污泥成熟时由白色转变为黄色,污泥容积指数(SVI)均保持在40mL/g左右;培养60d时,R1、R2内污泥基本实现颗粒化,颗粒化程度分别为90.0%、84.4%;R1、R2中胞外聚合物(EPS)质量浓度均在56d时分别为84.75、64.05mg/g(以单位质量挥发性悬浮固体(VSS)中的质量计,下同),其中R1、R2中多糖(PS)在EPS中占主要比重;R1、R2中培养的AGS均具有密实的结构和良好的沉降性能,对污染物具有良好的去除效果,培养后期R1、R2对COD平均去除率分别为96%、94%,对TN平均去除率分别为60%、56%,对TP平均去除率分别为65%、61%。R2中接种的部分厌氧颗粒污泥可能对EPS的分泌起到一定抑制作用,从而影响污泥的颗粒化进程。  相似文献   

14.
UASB/SBR/氧化塘工艺处理养猪废水   总被引:1,自引:0,他引:1  
针对养猪废水COD高、NH3-N高、SS高的特点.采用UASB/SBR/氧化塘作为主体处理工艺.UASB反应器采用消化污泥接种,SBR反应器采用好氧活性污泥接种,经过近2个月的运行,对COD、BOD5、NH3-N、SS、TP的去除率分别达到93.7%、97.4%、92.4%、97.3%、96.4%,出水各项指标都达到<畜禽养殖业污染物排放标准>(GB 18596-2001).  相似文献   

15.
曝气量和曝气时长对好氧颗粒污泥活性恢复的影响   总被引:1,自引:0,他引:1  
采用啤酒废水,在SBR中对在4℃的冰箱中储存8周的好氧颗粒污泥进行活性恢复。设置曝气时长分别为150 min和270 min,曝气量分别为0.1 m3/h和0.2 m3/h,考察了曝气时长和曝气量对好氧颗粒污泥活性恢复的影响。实验结果表明,好氧颗粒污泥在4℃冰箱中储存8周后,其颜色、粒径无明显变化;设置较长曝气时间(270 min)、较大曝气量(0.2 m3/h)时,颗粒污泥平均沉降速率、MLSS和SVI恢复最快,且对COD处理效果也恢复较快。而短曝气时间(150 min)、小曝气量(0.1 m3/h)有利于好氧颗粒污泥对氨氮去除效果的恢复。  相似文献   

16.
好氧颗粒污泥的培养及处理味精废水   总被引:1,自引:1,他引:0  
于鲁冀  何青  王震 《环境工程学报》2012,6(6):1929-1935
以厌氧颗粒污泥为接种污泥,在模拟废水条件下利用SBR 35 d成功培养出了具有同步硝化反硝化作用的好氧颗粒污泥,反应器对COD和NH4+-N去除率分别高于95%和99%。将该反应器用于处理味精废水,当COD、NH4+-N的容积负荷分别为2.4 kg/(m3.d)、0.24 kg/(m3.d)时,COD、NH4+-N和TN去除率分别高于90%、99%和85%。处理味精废水后的颗粒污泥粒径由之前的0.8~2.5 mm减小至0.6~1.8 mm,颗粒结构较之前更加密实。  相似文献   

17.
采用西安市第四污水处理厂A2/O系统中的絮体污泥为接种污泥,在连续流传统活性污泥系统中进行了好氧颗粒污泥的培养研究。当系统温度为25~27℃、沉淀时间为2 h、溶解氧为4.2 mg/L、搅拌速度为240 r/min时,系统可培养出粒径为0.5~1.5 mm的颗粒污泥,扫描电镜结果显示,颗粒污泥主要由球状菌和杆状菌组成,此外还存在少量的丝状菌。实验结果表明,相对于反应器的形式和沉淀时间,水力剪切力和接种污泥中的丝状菌对好氧颗粒污泥形成的影响更大,胞外多糖的产生对好氧颗粒污泥的形成也起着至关重要的作用。  相似文献   

18.
采用膜生物反应器进行含酚废水的处理,探讨投加好氧颗粒污泥对反应器中污泥性能的影响。结果表明,在膜生物反应器中投加好氧颗粒污泥能有效改善污泥性能,提高处理效果。从采用絮状污泥到逐渐增加好氧颗粒污泥投加量为100%的过程中,反应器中污泥浓度明显提高,MLSS由5 582 mg/L增加到8 168 mg/L;沉降性能得到改善,SVI由135.85 mL/g下降到29.36 mL/g;疏水性增强,Zeta电位由-20.302 mV升高到-4.325 mV;对含酚废水中COD、NH3-N的降解能力明显提高,COD、NH3-N、NO3-N去除率分别由87.3%、83.2%、55.3%增加到99.2%、94.9%、66.3%。改善了膜污染现象,膜通量衰减率由63.3%降低到42.8%。用二元多项式三维回归分析,得到污染物去除率关于好氧颗粒污泥投加量和反应器运行时间的二元方程,对指导好氧颗粒污泥膜生物反应器的连续运行具有重要意义。  相似文献   

19.
以污水处理厂二沉池的活性污泥为种泥,采用SBR反应器初步完成了反硝化聚磷菌(DPB)的培养与驯化.在第1阶段的30 d里,污泥进行了厌氧-好氧驯化,聚磷菌好氧吸磷最终可基本稳定在85%左右,然后转变驯化条件进行第2阶段的厌氧-缺氧驯化,60 d后磷的去除率稳定在70%左右.通过实验得出,硝酸盐的消耗量与磷的吸收量基本呈线性关系,认为系统基本完成了污泥的驯化.  相似文献   

20.
反硝化聚磷菌群的培养驯化   总被引:8,自引:0,他引:8  
以污水处理厂二沉池的活性污泥为种泥,采用SBR反应器初步完成了反硝化聚磷菌(DPB)的培养与驯化.在第1阶段的30 d里,污泥进行了厌氧-好氧驯化,聚磷菌好氧吸磷最终可基本稳定在85%左右,然后转变驯化条件进行第2阶段的厌氧-缺氧驯化,60 d后磷的去除率稳定在70%左右.通过实验得出,硝酸盐的消耗量与磷的吸收量基本呈线性关系,认为系统基本完成了污泥的驯化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号