首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为比较冬季城市和农村大气颗粒物浓度及化学组分等特征,本文分别采集分析了西安市区、安康农村冬季大气PM2.5颗粒物与PM0.1颗粒物。分析结果表明:两地大气中PM2.5日均浓度均超过国家二级标准(75μg·m~(-3)),空气质量不容乐观;其中农村样品中PM0.1颗粒物约占PM2.5颗粒物浓度的36.8%左右;所有颗粒物中有机碳远高于无机碳组分,而市区大气颗粒物中多环芳烃浓度显著高于农村浓度,说明城市空气中来源于机动车尾气的污染较为严重;从颗粒物粒径分布特征来看,粒径为0.300~0.374μm颗粒物具有最高数浓度和比表面积浓度,粒径为0.374~0.465μm的颗粒物具有最高质量浓度;由于农村污染源较为单一,安康样品颗粒物浓度受燃煤和油烟的影响较大。此外,由于受燃煤机动车排放影响,西安大气中PM0.1颗粒物中水溶性离子主要为NO_3~-与SO24,而安康大气PM0.1颗粒物中水溶性离子主要以SO_4~(2-)与Ca2+为主,PM2.5颗粒物中水溶性离子以NO_3~-、SO_4~(2-)和NH_4~+为主,这与农村环境中使用燃煤、农田灌溉、家畜喂养以及有机质降解等有关。  相似文献   

2.
浙江大气PM2.5污染问题突出。利用国家环境空气质量监测站的实时在线监测数据分析了2013年12月上旬长三角地区一次大气PM2.5严重污染前后浙江典型城市(杭州、湖州、金华、宁波和舟山)的PM2.5污染成因。结果表明,严重污染天(SPD)风速和大气边界层高度均较非污染天低,不利于污染物扩散,而气温和相对湿度高,易于二次颗粒物生成。PM2.5/CO(质量比)的变化结果显示,SPD二次颗粒物对杭州、宁波、舟山PM2.5浓度的贡献高于60%,对湖州和金华PM2.5浓度的贡献略低(42%~54%)。杭州SPD时二次NO3-、SO24-、NH4+的增长幅度远高于PM2.5,且氮转化率和硫转化率随相对湿度的升高而上升,表明硫酸盐和硝酸盐的生成是PM2.5污染的重要来源。气团后向轨迹显示,SPD时杭州和湖州主要受江苏、安徽及浙江省内其他城市气团传输的影响,宁波和舟山主要受上海、江苏、安徽及东海上空气团传输的影响,而金华主要受本地及邻近的杭州、绍兴的影响。  相似文献   

3.
高交通密度道路周边乔灌草型绿地对大气颗粒物的影响   总被引:1,自引:0,他引:1  
在杭州临安一高交通密度道路周边的乔灌草型绿地中监测了PM1浓度、PM2.5浓度、PM10浓度、温度、湿度、风速、气压、CO2浓度,研究了颗粒物的日变化规律、乔灌草群落对其的消减影响及与气象因子的关系。结果表明:(1)不同粒径的大气颗粒物PM1、PM2.5、PM10的日变化特征一致,表现为"早晚高、中午低"的现象,3者与同一气象因子的决定系数基本相同;(2)道路两边的绿地宽度并不一定越宽越好,还应考虑植物种类的配置结构、植被密集程度及经济性;(3)大气颗粒物浓度与温度、风速成负相关关系,与湿度、气压成正相关关系,其中风速是影响颗粒物浓度的最关键气象因子。  相似文献   

4.
南宁市大气颗粒物TSP、PM10、PM2.5污染水平研究   总被引:14,自引:1,他引:14  
2002年在南宁市的5个典型城市功能区内,共采集了125个大气样品(按季节分别采集),初步调查了大气中颗粒物TSP、PM10、PM2.5的污染状况。结果表明,南宁市TSP、PM10、PM2.5的污染很严重,超标率分别为67.5%、82.5%、92.5%,对人体健康危害更大的PM2.5占到了PM10的63.5%左右。重污染区PM2.5的浓度超过轻污染区近一倍。  相似文献   

5.
当前细颗粒物PM2.5已成为城市环境的主要污染物,研究城市不对称街谷内PM2.5浓度的垂直分布特征,对居民日常生活与健康出行有现实意义。实验选取2013年3个不同阶段对高度在1~35 m范围的街谷进行PM2.5浓度监测,同时引用街谷内流场模型与浓度场模型,对PM2.5浓度垂直分布特征及成因进行探究。结果表明,不对称街谷受大气对流、风速、风向影响,街谷内细颗粒物存在不均匀分布特点,在较高侧随着壁面高度的增加PM2.5浓度大体呈"S"型曲线变化。同时在同一阶段监测的4天中街谷内PM2.5浓度分布特征大体一致,而阶段之间差异明显;街谷内PM2.5浓度垂直分布的最高浓度差出现在阶段1,高达75μg/m3,阶段2与阶段3浓度差相对减弱,仅在20~30μg/m3之间。通过阶段2与阶段3对比可知,北京冬季供暖燃煤对大气细颗粒物的贡献较大,导致颗粒物浓度偏高;而非采暖期气温回升,大气对流作用较强,有助于大气颗粒物扩散,因而街谷内PM2.5污染程度相对较低。  相似文献   

6.
利用成都市2013年6月至2014年5月的PM10和PM2.5浓度监测数据,分析大气颗粒物污染特征,并探讨其与气温、相对湿度、降雨、风向、风速等气象因子的关联性。结果表明:成都市大气PM2.5污染较严重;PM10和PM2.5浓度及超标率均表现为冬季秋季春季夏季,秋季和冬季为大气颗粒物污染高发期;PM2.5对PM10贡献显著;气温超过10℃时,PM10和PM2.5最高浓度大体随气温升高而降低;相对湿度为40%~80%时,PM10和PM2.5浓度随相对湿度增加而升高;相对湿度超过80%时,易发生降雨,PM10和PM2.5浓度降低;降雨对PM10的清除量高于PM2.5,但降雨后PM10和PM2.5浓度较快回升;PM10和PM2.5浓度在偏西风下高于其他风向;PM10主要受局地源影响,而PM2.5主要受西北方向上的外来源影响。  相似文献   

7.
南昌市秋季大气PM_(2.5)浓度及化学组分特征分析   总被引:1,自引:0,他引:1  
2013年秋季在南昌市6个空气自动站点连续采集了10d的大气PM2.5样品,对采集的样品进行无机元素、有机碳、元素碳和水溶性离子等组分的分析。结果表明,监测期间南昌市PM2.5均值都低于《环境空气质量标准》(GB 3095—2012)二级标准限值(75μg/m3)。南昌市大气PM2.5主要组成元素为S、Si、Ca、Al、Fe、Na和Mg,说明城市扬尘、建筑水泥尘和燃煤尘等源类贡献率高;SO2-4、NO-3和NH+4是最主要的水溶性离子,NO-3与SO2-4浓度比为0.63,说明相比于固定源,以机动车排放为代表的流动源对南昌市大气PM2.5浓度影响更大;有机碳/元素碳(质量比)为2.9,说明南昌市有显著的二次有机碳生成。  相似文献   

8.
基于珠三角大气超级站2013年8月至2014年3月PM2.5、PM2.5中主要水溶性无机离子组分及其重要气态前体物等参数的逐时在线监测结果,揭示当地大气PM2.5中二次无机组分与其气态前体物的相互作用,以及PM2.5理化特性与成因的季节差异。结果表明,观测期间,PM2.5、PM10的年平均质量浓度分别为64.2、105.1μg/m3,PM2.5在PM10中所占比例(PM2.5/PM10)平均为61.1%。SO2-4、NO-3、NH+4的年平均质量浓度分别为16.6、9.0、10.2μg/m3,3者之和(SNA)占PM2.5的比例(SNA/PM2.5)平均为55.8%,体现了二次转化对珠三角地区PM2.5污染的重要影响;不同季节,SNA/PM2.5为46.0%~64.3%,夏季最低,冬季最高,其中SO2-4、NH+4对PM2.5的贡献相对稳定,NO-3贡献的季节差异较大;秋、冬季各项观测参数浓度的日变化规律相对明显,夏季除HNO3和NH3外,多项观测参数在低浓度水平波动,日变化规律不明显;珠三角大气中具有足量气态NH3以中和硫酸盐和硝酸盐,PM2.5中NH+4、SO2-4、NO-3主要以(NH4)2SO4和NH4NO3形式存在;本研究站点夏季的硫氧化率和氮氧化率均高于广州市,这充分体现了该站点的区域性特征。  相似文献   

9.
为提高细颗粒物(PM2.5)测量的准确性,尝试采用一种新型的气溶胶冷凝湿度控制器(简称冷凝湿度控制器)作为微振荡天平法颗粒物监测仪(TEOM)的除湿方式,在广东大气超级监测站开展了TEOM自动监测(一台采用传统的加热除湿方式,记为TEOM1405;另一台采用冷凝湿度控制器除湿,记为TEOM1405+除湿)和手工监测结果的对比。结果表明,根据PM2.5日均值相关性的拟合结果,TEOM1405监测较手工监测结果总体偏低约13%,加装冷凝湿度控制器后,TEOM1405+除湿监测较手工监测结果总体偏低在5%以内。加装冷凝湿度控制器后,显著提高了PM2.5的监测准确性;在相对湿度较高、二次颗粒物生成量较少的大气环境中,TEOM1405+除湿系统对PM2.5的监测结果是可靠的,而且在降雨过程中监测结果更为稳定;但在相对湿度较高、且二次颗粒物生成量较多的大气环境中,其对PM2.5的监测性能仍待进一步考察;在PM2.5污染比较严重的高污染时段,TEOM1405、TEOM1405+除湿监测到的PM2.5日均质量浓度分别比手工监测结果偏低26%和11%,偏低较多。但这种高污染情况在珠三角地区出现的概率很低,故采用TEOM1405+除湿系统进行PM2.5长期自动监测是可取的。  相似文献   

10.
多孔喷嘴PM10-PM2.5串级冲击式大气采样器的研制及应用   总被引:1,自引:0,他引:1  
多孔喷嘴冲击式大气采样器广泛应用于大气环境监测,相对于单孔喷嘴采样器,它具有压差小、相同空气雷诺数下采样流量大等特点.利用Marple的冲击理论,设计了一种中流量PM10-PM2.5串级冲击式大气采样器,采样流量为100L/min.用该采样器进行实地测量,通过PM2.5/PM10的比值分析,该采样器测量的PM2.5/PM10数据基本与文献报道一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号