共查询到20条相似文献,搜索用时 46 毫秒
1.
采用2段进水A/O中试系统处理重油加工污水处理系统的水解酸化单元出水,重点考察了污泥回流比(r)对系统性能的影响。结果表明,r值的变化对氮污染物的去除效果影响较大,对有机物的去除影响较小。在r值由0.60增加到1.25的过程中,尽管水量处理负荷在增加,污水、污泥和污染物的停留时间在减少,但是系统硝化和反硝化效果均明显提升。当r值高于1.25时,第1段缺氧区的硝酸盐氮去除量明显增加,但是系统硝化、反硝化效果均降低。当r值为1.25时,系统总氮去除率最高,为73.38%。此外,相对于传统的A/O工艺,2段进水A/O工艺污染物的停留时间更长,更有利于提高重油加工污水中难降解有机污染物的去除效果。 相似文献
2.
采用A/O MBBR工艺对垃圾焚烧渗沥液经厌氧生物处理后的出水进行脱氮处理,考察进水COD/N、pH、温度和回流比对脱氮系统中N2O释放量的影响。结果表明,A/O MBBR系统中N2O的释放量受进水COD/N、pH和回流比的影响较大,受温度的影响较小。降低进水COD/N、pH从8.5升高到9.5或降低到7.5、回流比从300% 升高到400%,系统中N2O的释放量均会升高。当进水COD/N为4.2,进水pH为8.5,温度为32 ℃,回流比为300% 时,A/O MBBR系统中总N2O的释放量最低,为2.03 mg·L-1,NH4+-N转化率和TN去除率分别为99.3%和80.6%。 相似文献
3.
4.
5.
通过对西安市某污水处理厂倒置A2/O工艺的沿程监测和工艺解析,分析明确了该工艺生物除磷效果差的影响因素。研究表明,缺氧池反硝化不完全,厌氧池高浓度硝酸盐是抑制聚磷菌释磷的重要因素。当厌氧池内硝酸盐浓度大于4 mg/L时会明显抑制生物除磷效果。硝酸盐的浓度在1~4 mg/L时,随着硝酸盐浓度的升高,释磷效果显著降低。为避免硝酸盐对聚磷菌的影响,需将厌氧池硝酸盐浓度控制在1 mg/L以下。硝酸盐对聚磷菌释磷的影响原因是生物脱氮除磷对碳源的竞争,以乙酸钠和原污水为碳源分析硝氮盐对释磷效果的影响。结果表明,易于生物降解的优质碳源更有利于聚磷菌在厌氧环境下释磷,倒置A2/O的前置式缺氧池首先将大量优质碳源用于反硝化,而造成后续厌氧池聚磷菌释磷效果差。针对这一研究结果,对该污水厂提出将倒置A2/O调整为常规A2/O的改造方案,改造后厌氧池硝酸盐浓度由3.57 mg/L降低至0.89 mg/L,聚磷菌释磷量提高1.8倍,系统除磷效果增强,出水总磷降低至0.66 mg/L,与倒置A2/O相比降低0.21 mg/L。 相似文献
6.
A2/O工艺重新启动试验的污泥活性恢复研究 总被引:1,自引:0,他引:1
以处理实际城市污水的小试规模A2/O工艺为研究对象,在处理工艺稳定运行的基础上关停装置60 d,进行了饥饿期内不同关停模式下系统重新启动后污泥活性恢复的研究.结果表明,循环模式、厌氧模式和微曝模式3种不同关停模式下,系统重启第4天,污泥硝化性能及反硝化性能基本恢复甚至超过关停前水平,而脱碳性能和除磷性能的恢复速度则较缓慢,重新启动后系统呈现较好的反硝化除磷能力;重启第12天后3种关停模式出水水质良好,基本满足<城镇污水处理厂污染物排放标准>(GB 18918-2002)一级B标准.不同关停模式下,系统污泥活性恢复速率及出水水质对比显示,污水处理厂故障检修期间将搅拌、曝气等动力设备完全关闭的厌氧模式下系统污泥活性恢复较快,而且能耗最低. 相似文献
7.
A/O和A2/O工艺对膜生物反应器处理焦化废水影响的研究 总被引:2,自引:0,他引:2
为提高膜生物反应器对焦化废水的处理效果,采用A/O和A2/O两种工艺的膜生物反应器处理焦化废水,通过对比处理效果、分析膜污染情况,寻求膜生物反应处理焦化废水的最优工艺。实验结果表明:A2/O工艺系统对酚、NH3-N、COD的去除率分别为99%、90%和95%;A/O工艺系统对酚、NH3-N和COD的去除率分别为97%、75%和93%。A2/O膜生物反应器系统对焦化废水中NH3-N的去除效果明显优于A/O膜生物反应器系统,其反硝化率为50%-70%。对膜污染分析表明不同工艺对膜污染的影响不显著,A2/O工艺膜通量衰减59%,A/O工艺膜通量衰减56%。研究表明在膜生物反应器中,A2/O工艺对焦化废水的去除效果要优于A/O工艺。 相似文献
8.
9.
A2O工艺好氧末段溶解氧变化对脱氮除磷影响 总被引:1,自引:0,他引:1
采用连续流A2O工艺处理实际的生活污水,研究好氧末段在不同溶解氧(DO)浓度条件下对污泥沉降性能、系统脱氮除磷的影响,同时考察了DO对污泥硝化活性、厌氧释磷速率和反硝化脱氮速率的影响。结果表明,随着末段溶解氧的提高,污泥容积指数SVI从140降至100左右,后又升高到120~170;系统的硝化效果提高,氨氮的去除率从60%升高到80%以上再到90%以上;总氮的去除效果也有显著提高,平均去除率从54%升高到63%再到67%;虽然磷的去除效果有所加强,总磷的平均去除率从41%升高到59%再到69%,但仍难达标。 相似文献
10.
11.
利用生物膜序批式反应器(SBBR),考察不同溶解氧(DO)条件下硝化过程中N2O产生及释放过程。研究结果表明:DO浓度增大有利于控制系统中N2O的产生;DO浓度分别为(1.92±0.14)mg/L、(2.34±0.11)mg/L和(2.70±0.11)mg/L时,硝化过程中N2O释放因子(N2O总产量与NH4+-N转化量的比值)分别为5.47%、5.36%和4.77%。分析其原因主要是DO浓度的减小使DO对生物膜的穿透力降低,氧传递能力减弱后生物膜系统内易发生以N2O为产物的氨氧化细菌(AOB)反硝化反应。同时,在研究的3种不同的DO条件下,低DO运行条件更有利于SBBR实现亚硝酸盐型同步硝化反硝化。 相似文献
12.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。 相似文献
13.
14.
中国是世界上最大的水产养殖国,但是含有大量氮元素化合物的养殖废水对周围环境的污染已经成为影响该行业可持续发展的关键因素。鱼菜共生系统被认为是解决这一问题的有效途径。作为一种新兴的生态系统,目前对鱼菜共生系统中氮元素迁移转化规律的研究较少。通过对实验室规模的鱼菜共生系统进行研究,揭示系统内氮的迁移转化规律,掌握N2O的释放规律,同时尝试采用填料级配分层、添加硝化细菌等方式对系统进行优化。研究结果表明,投入系统的饵料中氮素以氨氮的形式被排出鱼体外后,在微生物作用下转化为亚硝酸盐氮及硝酸盐氮,进一步被植物吸收利用,提高了氮的利用效率。鱼菜共生系统以N2O形式释放的氮素约占氮素总输入的1.54%,与普通水产养殖相比,其N2O转化率没有明显增加。另外,采用填料级配分层以及添加硝化细菌等方法对系统进行优化,可促进系统内硝酸盐的积累,减少N2O释放,提高系统的经济效益和环境效益。 相似文献
15.
考察了不同混合液回流比(Ri)条件下,改良A2O工艺的效果.COD去除率受Ri的影响较小,Ri=200%、300%和400%时的COD去除率分别为83.3%、79.9%和84.3%.氮的去除率受其影响明显.不同Ri所引起的缺氧池硝态氮负荷以及实际水力停留时间的变化,使得TN和NH3-N的去除率呈现相互制约的关系.此外,硝酸盐作为反硝化除磷过程的电子受体,Ri为200%和300%时,其浓度较高,对应的TP平均去处率可分别高达73.3%和85.3%;而缺氧池硝酸盐浓度相对较低时(Ri=400%),TP平均去处率仅为54.4%.应对不同进水水质情况对系统脱氮除磷效率提出的要求,可选择适当的Ri,协调工艺对TN、NH3-N以及TP的去除能力,同时,满足较高出水标准的要求. 相似文献
16.
通过耦合导致N2O产生的亚硝酰基(NOH)化学分解和氨氧化细菌(AOB)反硝化途径,构建了一种包含10个组分和7个生化过程的硝化阶段N2O动力学模型。与此同时,利用MATLAB和Excel软件工具,完成了对所有动力学参数的相对灵敏度分析,并在此前提下实现了对模型关键参数的拟合,完成了对模型的模拟与验证过程,进而确定了一种不同于已有活性污泥模型计算软件的模型计算方法。并且通过对模型数据和实验数据之间相关系数(R2)的考察,证明本模型不仅对硝化阶段含氮组分具有良好的模拟效果,同时也与机理研究相符。 相似文献
17.
以50℃高温、好氧条件下能进行高效好氧反硝化的菌株TAD1为研究对象,在不同C/N和pH值培养条件下,对其24 h的反硝化效率和反硝化过程中N2O的逸出量进行了研究。结果显示,C/N和pH值对菌株TAD1的反硝化效率和N2O产生量有明显影响.菌株TAD1最适宜的C/N为9,pH值为7,此时反硝化效率达到99.12%,N2O产生量仅为3.35×10-2 mg/L,N2 O转化率为0.045%,反硝化产物以氮气为主。另外,菌株TAD1不适宜在酸性条件下生长,pH值为6时反硝化效率为83.18%,N2O产生量为13.88×10-2 mg/L,是pH值为7时的4.14倍,是pH值为8时的5.07倍。 相似文献
18.
19.
分段进水缺氧/好氧(A/O)工艺是一种高效的污水生物脱氮工艺。但原水多点投配给该工艺带来诸多好处的同时, 也为其优化运行带来一定困难。其中,可行的流量分配方法的建立是分段进水工艺发挥其优势并高效运行的瓶颈问题。提出3种不同的流量分配方法并进行相应的理论分析: (1) 采用等负荷流量分配法,其遵循的原则是保证各段硝化菌负荷相同, 以利于硝化菌生长,优先满足系统硝化, 最大程度地降低出水氨氮浓度; (2)采用流量分配系数, 原则是各缺氧段进水有机物质恰好可以为上段好氧区产生的硝酸盐氮反硝化提供充足的电子供体。 利用该方法可以充分利用原水中碳源,发挥缺氧区反硝化潜力,并保证最后一段进水量最少, 降低出水硝酸盐氮含量; (3)末端集中进水,用于暴雨等产生洪峰流量时, 将进水点向系统末端移动, 并加大末端进水量, 以减小二沉池固体负荷, 避免污泥冲刷流失。3种流量分配方法的提出,可以应对水厂不同的进水水质和出水要求,增强分段进水A/O生物脱氮工艺的实际可操作性,提高处理效率,为目前采用分段进水A/O工艺的污水厂的优化运行管理提供可靠的理论借鉴。 相似文献
20.
改良型多级A/O工艺处理低碳源(C/N4+-N分别低于23.7、2.23 mg/L,但对系统脱氮除磷及反硝化能力的影响较大。流量分配比为5:3:1:1时,系统能够有效利用进水碳源进行反硝化,且反硝化效果最好,出水TN、TP浓度分别为14.15和0.99 mg/L,去除率分别为79.6%和79.5%。总体而言,改良型多级A/O工艺对低碳源生活污水中污染物有很好的去除效果,这可为实际生活污水的处理提供理论依据。 相似文献