首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen S  Nyman MC 《Chemosphere》2007,66(8):1523-1534
The sorption and desorption behavior of benzidine in eight solvent-sediment systems were studied using a batch method. The solvents tested included deionized water (DI), calcium chloride solution (CaCl2), sodium hydroxide solution (NaOH), acetonitrile (ACN), a mixture of acetonitrile and ammonium acetate solution (ACN-NH4OAc), methanol (MeOH), ammonium acetate solution (NH4OAc) and hydrochloric acid solution (HCl). Three sets of sorption isotherm experiments were conducted separately in these eight solvents with seven days, three weeks, and two months of contact times, respectively. The results demonstrated nonlinear benzidine sorption phenomena in all eight solvents with higher sorption affinities for sediment sites in the aqueous solvents than in the organic solvents. The results from the desorption experiments revealed that the benzidine desorption efficiencies in the solvents decreased in an order, which was approximately the reverse order of its sorption affinity. Results also suggested that hydrophobic partitioning and covalent binding processes dominated in the desorption experiments, while cation exchange process had little effect on desorption of benzidine. A three-stage model was subsequently applied to simulate the desorption data in the selected solvents of ACN, ACN-NH4OAc and NaOH, respectively. The rapidly desorbing initial fractions were about 0.13-0.20, 0.15-0.26, and 0.18-0.25 for ACN, ACN-NH4OAc and NaOH, respectively. Finally, the sorbed concentrations of benzidine in slowly and very slowly desorbing domains in the selected solvents were correlated with the maximum sorption capacities obtained from the Langmuir sorption isotherm model. The maximum sorption capacities of benzidine were found to be comparable to the amount of benzidine residing in the slowly and very slowly desorbing domains.  相似文献   

2.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

3.
Solvent extraction of contaminated soils, sludges and sediments has been successfully completed at a number of Superfund sites. Each commercialized process uses a unique operating system to extract organic contaminants from solids. These operating systems may be classified by the properties of the solvents each utilizes: (1) standard solvents, (2) near-critical fluids/liquified gases, and (3) critical solution temperature solvents. Pretreatment and post-treatment requirements vary depending upon the operating systems of the solvent extraction system. Future demonstrations of these technologies by the U.S. EPA’s Superfund Innovative Technology Evaluation Program will provide additional information regarding the efficacy of these processes.  相似文献   

4.

With the rapid industrialization, especially offshore oil exploitation, frequent leakage incidents of oils/organic solvents have adversely affected ecological systems and environmental resources. Therefore, great interest has been shown in developing new materials to eliminate these organic pollutants, which have become worldwide problems. In this study, a cost-effective, environmentally friendly porous aerogel with three-dimensional (3D) structure was prepared from grapefruit peel by a facile hydrothermal method as the adsorbent of oils/organic solvents. The as-prepared modified grapefruit peel aerogel (M-GPA) showed mesoporous structure with high specific surface area of 36.42 m2/g and large pore volume of 0.0371 cm3/g. The excellent hydrophobicity of M-GPA with a water contact angle of 141.2° indicated a strong potential for adsorption of oils and organic solvents. The high adsorption capacity of M-GPA for a series of oils and organic solvents was 8 to 52 times as much as its own weight. Moreover, the M-GPA was easily regenerated and a high adsorption capacity recovery above 97% was maintained after five adsorption–regeneration cycles. Therefore, the M-GPA is a promising recyclable adsorbent for the removal of oils/organic solvents from polluted water.

  相似文献   

5.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

6.
Metzger JO 《Chemosphere》2001,43(1):83-87
The use of organic solvents should be minimized as far as possible to reduce atmospheric volatile organic compounds (VOCs). Examples of solvent-free organic syntheses are described. The increasing usage of renewable feedstocks taking advantage of the synthetic potential of nature is another way to avoid organic solvents. Most important is the development of chemical products, i.e., coatings that can be processed without organic solvents.  相似文献   

7.
不同洗脱剂对有机氯农药污染场地土壤修复效果比较   总被引:4,自引:1,他引:3  
为了筛选出能有效修复有机氯农药污染土壤的洗脱剂,选取了16种洗脱剂对2种复合有机氯农药(六六六(HCHs)和滴滴涕(DDTs)、氯丹和灭蚁灵)污染场地土壤进行超声洗脱修复。结果表明,对于HCHs和DDTs复合污染土壤,乙酸乙酯和丙酮对HCHs的洗脱率最高,分别为87.6%和87%,其余有机溶剂对其洗脱率也在70%以上。乙酸乙酯和丙酮对于DDT仍为最优,分别为86.9%与78.4%,其余有机试剂对DDT的洗脱率在60%以上。相对于有机溶剂,表面活性剂对HCHs和DDTs复合污染土壤的洗脱效果不好,总洗脱率均低于4%。同样,对于氯丹和灭蚁灵复合污染土壤,有机溶剂的洗脱效果也明显优于表面活性剂。有机溶剂对灭蚁灵的洗脱率,除了正丙醇较低(63.5%)外,其余均在80%左右。对氯丹的洗脱率,除石油醚(59.6%)、正己烷(49.3%)和正丙醇(42%),其余均在70%以上。相同摩尔浓度的表面活性剂中,吐温80对氯丹的洗脱率为54%,环糊精为20%,鼠李糖脂和曲拉通100为13%左右,其余则小于5%,吐温80对灭蚁灵的洗脱率为29.6%,曲拉通100的为12.4%,鼠李糖脂为5.7%,其余则更低。因此,高效低毒的有机试剂,如乙酸乙酯、丙酮和乙醇等可作为有机氯农药污染土壤修复的首选。  相似文献   

8.
Over the next decade, use of chlorinated solvents, a widely employed class of chemicals, will decline significantly because of increasingly stringent environmental regulations. These solvents pose certain health and environmental problems and they have been heavily scrutinized. The alternatives to the solvents are being adopted without controls. In some cases, these substances will pose other health and environmental problems that are likely to be as serious; in other cases, the alternatives have not been examined for their health and environmental effects at all. This case study demonstrates that regulations on chlorinated solvents and their potential alternatives are inconsistent with one another and conflicting.  相似文献   

9.
Over the next decade, use of chlorinated solvents, a widely employed class of chemicals, will decline significantly because of increasingly stringent environmental regulations. These solvents pose certain health and environmental problems and they have been heavily scrutinized. The alternatives to the solvents are being adopted without controls. In some cases, these substances will pose other health and environmental problems that are likely to be as serious; in other cases, the alternatives have not been examined for their health and environmental effects at all. This case study demonstrates that regulations on chlorinated solvents and their potential alternatives are inconsistent with one another and conflicting.  相似文献   

10.
几种有机废气吸收液对甲苯吸收效果的对比   总被引:3,自引:0,他引:3  
肖潇  晏波  傅家谟 《环境工程学报》2013,7(3):1072-1078
采用自行设计的吸收装置,对比研究了国内外文献报道的几种有机废气吸收液(二乙基羟胺、聚乙二醇400、硅油、食用油、废机油、0#柴油)对模拟甲苯废气的吸收效果。结果表明,通过改变吸收液种类、废气中甲苯浓度等条件能够对甲苯废气吸收效果产生显著影响。随着吸收时间的延长,吸收液对甲苯的吸收率逐渐降低,直至达到动态饱和。随甲苯废气中甲苯浓度的增大,吸收液的有效吸收量减小,而饱和吸收量则增大。在相同实验条件下,二乙基羟胺对甲苯的有效吸收量与饱和吸收量均最大,其次是食用油、机油、0#柴油,而聚乙二醇与硅油吸收效果最差。本研究结果为合理选择甲苯废气的高效吸收液提供了理论依据。  相似文献   

11.
《Environmental Forensics》2013,14(3):179-184
The historical record does not support the argument that the cause of widespread groundwater contamination by chlorinated solvents in southern California was an inability to anticipate or detect the problem. The propensity of industrial wastes, including chlorinated solvents, to contaminate groundwater was understood by the 1940s in southern California. This understanding was not limited to a small group of specialists, but extended to regulators, industry, and the interested public. Industrial waste disposal was deregulated in 1949 as a result of lobbying by industry, despite a warning from the director of the State Health Department that such action would create "a backlog of water pollution over the State that will constitute a plague comparable to the air pollution in Los Angeles". Regulators warned specifically about the danger that groundwater pollution in the San Fernando and San Gabriel valleys would result from improper disposals of industrial chemicals, and solvents were identified as major contaminants in the scientific literature. Analytical methods to detect chlorinated solvents in groundwater at the concentrations found near the DNAPL (dense non-aqueous phase liquids) source zones have been well known since at least 1950, and a method with a detection limit of 10 w g/L was published as early as 1953.  相似文献   

12.
P K Lau  A Koenig 《Chemosphere》2001,44(1):9-15
An attempt has been made to establish a mass balance of industrial organic solvents in Hong Kong. It is estimated that only a small portion, less than 4%, of all the organic solvents consumed in Hong Kong are collected as waste solvents and properly treated, while the remainder are used either in the formulation of solvent containing products, or are lost to the environment through vapour emissions, leaks and spills, or dumped illegally. It was found that solvent recycling has been a common practice in some industries but the existing level of solvent recycling in Hong Kong is difficult to estimate. About 87.4% of all the waste organic solvents disposed of at the licensed facilities are potentially recyclable although whether they can be recycled in practice depends on many factors. Examples of existing waste organic solvent management and recycling practices from selected industries in Hong Kong are presented. The economic feasibility of current and future potential recycling systems is evaluated for a few selected cases. An integrated waste organic solvent management strategy is proposed to minimize adverse impacts of organic solvents to the environment and human health.  相似文献   

13.
Tsai TY  Okawa K  Nakano Y  Nishijima W  Okada M 《Chemosphere》2004,57(9):1151-1155
The effects of chemical characteristics of organic solvents on the decomposition rate constants of undissociative trichloroethylene (TCE) and dissociative 2,4-dichlorophenol (2,4-DCP) by ozonation were studied. The TCE and 2,4-DCP decomposition by ozonation in organic solvents followed to the first-order reaction kinetics with respect to TCE or 2,4-DCP concentration. The orders of the rate constants among organic solvents for undissociative TCE and dissociative 2,4-DCP were different indicating that the ozonation rates for undissociative and dissociative compounds were dependent on the chemical property of organic solvent. The decomposition of undissociative TCE by ozonation was a simple electrophilic reaction, which was dependent on acceptor number (AN) of the solvent. On the other hand, the decomposition of dissociative 2,4-DCP was dependent on by the dissociation of the compounds and would be dependent on donor number (DN) of the solvent. Finally, TCE in acetic acid was transformed to chlorinated intermediates and chloride ion and then these intermediates were continuously oxidized to chlorine gas.  相似文献   

14.
The widespread use of industrial chemicals in our highly industrialized society has often caused contamination of large terrestrial and marine areas due to the deliberate and accidental release of organic pollutants into the soil and groundwater. In this review, environmental problems arising from the use of chlorinated solvents and BTEX compounds are described, and an overview about active management strategies for remediation with special emphasis on phytoremediation are presented to achieve a reduction of the total mass of chlorinated solvents and BTEX compounds in contaminated areas. Phytoremediation has been proposed as an efficient, low-cost remediation technique to restore areas contaminated with chlorinated solvents and BTEX compounds. The feasibility of phytoremediation as a remediation tool for these compounds is discussed with particular reference to the uptake and metabolism of these compounds, and a future perspective on the use of phytoremediation for the removal of chlorinated solvents and BTEX compounds is given.  相似文献   

15.
The historical record does not support the argument that the cause of widespread groundwater contamination by chlorinated solvents in southern California was an inability to anticipate or detect the problem. The propensity of industrial wastes, including chlorinated solvents, to contaminate groundwater was understood by the 1940s in southern California. This understanding was not limited to a small group of specialists, but extended to regulators, industry, and the interested public. Industrial waste disposal was deregulated in 1949 as a result of lobbying by industry, despite a warning from the director of the State Health Department that such action would create “a backlog of water pollution over the State that will constitute a plague comparable to the air pollution in Los Angeles”. Regulators warned specifically about the danger that groundwater pollution in the San Fernando and San Gabriel valleys would result from improper disposals of industrial chemicals, and solvents were identified as major contaminants in the scientific literature. Analytical methods to detect chlorinated solvents in groundwater at the concentrations found near the DNAPL (dense non-aqueous phase liquids) source zones have been well known since at least 1950, and a method with a detection limit of 10 μg/L was published as early as 1953.  相似文献   

16.
The self-organising map approach was used to assess the efficiency of chlorinated solvent removal from petrochemical wastewater in a refinery wastewater treatment plant. Chlorinated solvents and inorganic anions (11 variables) were determined in 72 wastewater samples, collected from three different purification streams. The classification of variables identified technical solvents, brine from oil desalting and runoff sulphates as pollution sources in the refinery, affecting the quality of wastewater treatment plant influent. The classification of samples revealed the formation of five clusters: the first three clusters contained samples collected from the drainage water, process water and oiled rainwater treatment streams. The fourth cluster consisted mainly of samples collected after biological treatment, and the fifth one of samples collected after an unusual event. SOM analysis showed that the biological treatment step significantly reduced concentrations of chlorinated solvents in wastewater.  相似文献   

17.
The ever-increasing demand for determining pesticides at low concentration levels in different food matrices requires a preliminary step of pre-concentration which is considered a crucial stage. Recently, the parameter of “greenness” during sample pre-concentration of pesticides in food matrices is as important as selectivity in order to avoid using harmful organic solvents during sample preparation. Developing new green pre-concentration techniques is one of the key subjects. Thus, to reduce the impact on the environment during trace analysis of pesticides in food matrices, new developments in pre-concentration have gone in three separate directions: the search for more environmentally friendly solvents, miniaturization and development of solvent-free pre-concentration techniques. Eco-friendly solvents such as supercritical fluids, ionic liquids and natural deep eutectic solvents have been developed for use as extraction solvents during pre-concentration of pesticides in food matrices. Also, miniaturized pre-concentration techniques such as QuEChERS, dispersive liquid–liquid micro-extraction and hollow-fiber liquid-phase micro-extraction have been used during trace analysis of pesticides in food samples as well as solvent-free techniques such as solid-phase micro-extraction and stir bar sorptive extraction. All these developments which are aimed at ensuring that pesticide pre-concentration in different food matrices is green are critically reviewed in this paper.  相似文献   

18.
光源和溶剂对十溴联苯醚光降解的影响   总被引:2,自引:0,他引:2  
研究了不同光源和溶剂对十溴联苯醚(DecaBDE)光降解特性的影响,并对其降解产物进行了探讨.结果表明,在所试光源和溶剂条件下,DecaBDE均有一定程度的光降解,且都近似符合一级降解动力学.同一光源下,不同溶剂对DecaBDE降解表现出不同的影响.在太阳光照射下,DecaBDE降解速率为甲苯>甲醇>正己烷>正己烷/丙酮>甲醇/水>乙醇/水;在模拟光源照射下,DecaBDE降解速率为甲苯>甲醇>甲醇/水>乙醇/水>正己烷>正己烷/丙酮;在紫外光照射下,DecaBDE降解速率为甲苯>甲醇>正己烷/丙酮>正己烷>甲醇/水>乙醇/水.同一溶剂中,DecaBDE降解速率均为紫外光>太阳光>模拟光源.尽管光源和溶剂对DecaBDE降解速率产生了一定影响,但降解途径基本一致,均为DecaBDE经光解脱溴产生低溴联苯醚.  相似文献   

19.
This paper reports the construction of the gold/mercaptobenzothiazole/polyaniline/acetylcholinesterase/polyvinylacetate (Au/ MBT/PANI/AChE/PVAc) thick-film biosensor for the determination of certain organophosphate pesticide solutions in selected aqueous organic solvent solutions. The Au/MBT/PANI/AChE/PVAc electrocatalytic biosensor device was constructed by encapsulating acetylcholinesterase (AChE) enzyme in the PANI polymer composite, followed by the coating of poly(vinyl acetate) (PVAc) on top to secure the biosensor film from disintegration in the organic solvents evaluated. The electroactive substrate called acetylthiocholine (ATCh) was employed to provide the movement of electrons in the amperometric biosensor. The voltammetric results have shown that the current shifts more anodically as the Au/MBT/PANI/AChE/PVAc biosensor responded to successive acetylthiocholine (ATCh) substrate addition under anaerobic conditions in 0.1 M phosphate buffer, KCl (pH 7.2) solution and aqueous organic solvent solutions. For the Au/MBT/PANI/AChE/PVAc biosensor, various performance and stability parameters were evaluated. These factors include the optimal enzyme loading, effect of pH, long-term stability of the biosensor, temperature stability of the biosensor, the effect of polar organic solvents, and the effect of non-polar organic solvents on the amperometric behavior of the biosensor. The biosensor was then applied to detect a series of 5 organophosphorous pesticides in aqueous organic solvents and the pesticides studied were parathion-methyl, malathion and chlorpyrifos. The results obtained have shown that the detection limit values for the individual pesticides were 1.332 nM (parathion-methyl), 0.189 nM (malathion), 0.018 nM (chlorpyrifos).  相似文献   

20.
Solvent toxicity to amphibian embryos and larvae   总被引:1,自引:0,他引:1  
Organic micropollutants are often damaging for aquatic organisms. Being usually hydrophobic compounds, they are often dissolved in an organic co-solvent which increases their solubility in water. The aim of this study was to study the toxicity of various solvents on embryos (protected or not by jelly coat) and on tadpoles of the common frog (Rana temporaria). Tested solvents were methanol (MeOH), methylene chloride (CH(2)Cl(2)), dimethyl sulfoxyde (DMSO), acetone (Ac) and ethanol (EtOH). Embryos exhibited higher mortality rates than tadpoles. Embryos with jelly were more sensitive to high concentration of solvents than embryos without jelly (except for acetone). According to these results, Ac, DMSO and CH(2)Cl(2) can be used as co-solvents in water to help the dissolution of micropollutants at concentration equal to or lower than 0.001 ml/l for frog embryos, and EtOH, Ac and CH(2)Cl(2) at concentration equal to or lower than 0.01 ml/l for Rana temporaria tadpoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号