首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
镁盐改性活性炭对普拉红B的吸附性能研究   总被引:1,自引:0,他引:1  
运用化学沉淀-原位复合法制得氢氧化镁/活性炭复合材料(Mg(OH)2/AC),对其比表面积和XRD谱进行了表征,考察了该复合材料对普拉红B的脱色性能.结果表明,在293~313 K下,Langmuir模型和Freundlich模型都能很好地描述Mg(OH)2/AC对普拉红B的等温吸附过程,而Langmuir模型更为合适...  相似文献   

2.
Incineration is a traditional method of treating sewage sludge and the disposal of derived ash is a problem of secondary waste treatment. In this study, sewage sludge ash (SSA) was coated with ferrite through a ferrite process and then used as an adsorbent for ionic dyes (methylene blue [MB] and Procion Red MX-5B [PR]). The modified SSA possessed surface potential that provided electrostatic attraction toward MB and PR. Adsorbent FA10 (named on the basis of being produced from 10 g of SSA in the ferrite process) was used for the adsorption of MB. Ideal pH for adsorption was 9.0 and maximum adsorption capacity based on Langmuir isotherm equation was 22.03 mg/g. Adsorbent FA2.5 (named on the basis of being produced from 2.5 g of SSA in the ferrite process) was used for PR adsorption. Ideal pH for adsorption was 3.0 and the maximum adsorption capacity (calculated as above) was 28.82 mg/g. Kinetic results reveal that both MB and PR adsorption fit the pseudo-second-order kinetic model better than the pseudo-first-order model. The values of activation energy calculated from rate constants were 61.71 and 9.07 kJ/mol for MB and PR, respectively.

Implications:

Magnetic modified adsorbent could be synthesized from sewage sludge ash (SSA). In this study, the adsorption ability of SSA toward ionic dye (methylene blue [MB] and Procion Red MX-5B [PR]) was enhanced by ferrite process. The synthesized Fe3O4 can act as an active site and provide electrostatic attraction toward cationic dye and anionic dye at different pH. The application of magnetic modified adsorbent in wastewater treatment can not only recycle the SSA, but also make SSA become an environmentally friendly material.  相似文献   


3.

This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pHpzc) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L)?1/n] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  相似文献   

4.
利用浸渍-碱性微波法制备载磁粉末活性炭,通过等温吸附实验和动力学吸附实验,研究对比了其与原料活性炭、浸渍载铁活性炭对壬基酚的吸附性能。采用氮气吸附仪、FTIR、XRD、国标(GB/T12496.19-1999)邻菲啰啉分光度法及VSM,分别对3种样品进行了物相结构、表面官能团、铁含量及磁性能的分析,并探讨了吸附机理。结果表明,浸渍-碱性微波法载磁活性炭的总孔容及孔隙率均有较大提高;其吸附等温线符合Freundich方程,吸附动力学过程符合准二级动力学方程与孔道内扩散模型,相关系数R2均大于0.900。原活性炭经一定浓度的铁盐溶液浸渍后,铁含量由2%提高到8%。在碱性、N2气氛条件下微波后,铁系物主要存在形式为零价铁和Fe3O4,制得的载磁活性炭饱和磁化强度为1.12 emu/g。  相似文献   

5.

Adsorptive removal of copper by activated carbon derived from modified rice husk (ACRH) was studied in the presence and absence of magnetic field (MF). The ACRH was prepared from the normal rice husk treated by NaOH solution and subsequent pyrolysis at 450 °C in the absence of oxygen. The physicochemical properties of ACRH's were determined before and after the adsorption process to delineate the adsorption mechanism. The BET analysis confirmed that the fabricated ACRH has a specific surface area of 8.244 m2/g with a mesopore to micropore ratio of 0.974. It was observed that the micropore structure gradually replaced the mesopores, and the surface area of the micropore increased (from 0.9219 to 4.1764 m2/g), and the pore diameter was also decreased from 180.381 to 46.249 Å after pyrolysis. The CHNO/S test result reveals that the carbon content was increased from 42 to 67.8% in the ACRH after pyrolysis. The batch sorption studies were performed by varying the initial adsorbate concentration, temperature, agitation speed, pH, adsorbent dose and contact time for magnetic and non-magnetic conditions to analyze the effect of the magnetic field. The univariate studies show that the maximum experimental adsorption capacity was 4.522 mg/g and 3.855 mg/g, respectively, for these two conditions (representing the magnetic impact) at 25 °C with an adsorbent dose of 2 g/L and an agitation speed of 150 rpm. It was also observed that the removal efficiency was 94.55% and 77.96% (magnetic and non-magnetic condition) at pH 7 with a concentration of 10 mg/L in 2 h. The test result on the impact of exposure time on the magnetic field suggested that the magnetic memory influenced the removal efficiency; after 40 to 60 min, the maximum removal efficiency was achieved, around 80 to 90%. The pseudo-second-order kinetic model was best fitted with the experimental data with a rate constant as 0.1749 and 0.1006 g/mg/min for these two conditions. The Temkin model delineates the adsorption isotherm suggesting the heat generated during the adsorption process is linearly abate with the coverage of the surface area of the adsorbent. The thermodynamic model confirms that the copper adsorption is spontaneous (ΔG = ? 3.91 kJ/mol and ? 6.02 kJ/mol), wherein the negative enthalpy value (ΔH = ? 36.74 kJ/mol and ? 25.74 kJ/mol) suggested that the process is exothermic irrespective of magnetic interference. The significant enhancement of copper removal was observed by incorporating the magnetic field, showing an increase in sorption capacity by 17.48% and a reduction of reaction time by 88.12%.

  相似文献   

6.
In the present study, the photocatalytic degradation of Reactive Red 195 (RR195) from aqueous samples under UV-A irradiation by using anatase/brookite TiO2 (A/B TiO2) mesoporous nanoparticles has been investigated. Batch experiments were conducted to study the effects of the main parameters affecting the photocatalytic process. The effects and interactions of most influenced parameters, such as substrate concentration and catalyst load, were evaluated and optimized by using a central composite design model and a response surface methodology. The results indicated that the dye degradation efficiency in the experimental domain investigated was mainly affected by the tested variables, as well as their interaction effects. Analysis of variance showed a high coefficient of determination value (R 2?=?0.9947), thus ensuring a satisfactory adjustment of the first-order regression model (2FI model) with the experimental data. The obtained results also indicate that catalyst loading plays an important role in determining the removal efficiency of RR195 attributable to both photodegradation and adsorption process. Under optimal conditions (initial dye concentration (50 mg/L) and catalyst loading (2,000 mg/L), A/B TiO2 showed similar removal efficiency compared to that of commercial titania (Degussa P25). Also, at these conditions, complete degradation of RR195 can be achieved by both catalysts within 15 min under UV-A irradiation. The experiments demonstrated that dye removal on the prepared A/B TiO2 was facilitated by the synergistic effects between adsorption and photocatalysis. Photocatalytic mineralization of RR195 was monitored by total organic carbon. The recycling experiments confirmed the stability of the catalyst.  相似文献   

7.
活化赤泥的除氟性能   总被引:1,自引:0,他引:1  
以成本低的铝工业废矿渣(赤泥)为原材料,通过高温煅烧和酸化处理对赤泥进行活化,制备了除氟吸附剂。研究了反应时间、投加量、初始氟浓度、溶液温度、共存阴离子和pH值对活化赤泥除氟效果的影响。结果表明,接触反应时间为18 h时,吸附接近平衡。活化赤泥对氟离子的吸附符合Lagergren二级吸附动力学方程。另外,初始浓度越高,吸附容量越大。与Freundlich相比,Langmuir吸附等温模型可以更好地描述氟离子的吸附特性,最大吸附量可达2.71 mg/g。SO24-、Cl-和NO3-存在时(〈1 000 mg/L),对氟离子的吸附几乎没有影响,然而,HCO3-、PO34-和氟离子共存时,会对氟吸附造成不利影响。活化赤泥在pH值3.5~11.0时,具有较好的吸附稳定性。活化赤泥是一种吸附容量高、性能稳定的环境友好型除氟材料,具有应用潜力。  相似文献   

8.
The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g–1, 2.65 mg·g–1, 16.30 mg·g–1, 20.80 mg·g–1, and 382.70 mg·g–1, which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar.

Implications: The paper focuses on the biochar derived from rice hull–removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull–derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g?1, and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.  相似文献   

9.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500°C) were investigated. The biochar used in the current study was derived from the camphor tree (Cinnamomum camphora). The samples were ground and sieved to produce particle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H2S sorption. Certain threshold ranges of the pyrolysis temperature and surface pH were observed, which, when exceeded, have dramatic effects on the H2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400°C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S.

Implications: This paper studies the potential of biochar derived by camphor to adsorb hydrogen sulfide at environmentally sustainable temperatures. The different sizes of the biochars and the different temperatures of pyrolysis for the camphor particle have a great impact on adsorption of hydrogen sulfide.  相似文献   

10.
曹春华  肖玲 《环境工程学报》2014,8(4):1482-1486
利用壳聚糖对金属离子的吸附和螯合作用,通过简单的液相沉淀-还原过程一步原位合成了交联壳聚糖/Cu2O复合粒子。X射线衍射(XRD)和红外(FT-IR)测试结果表明,壳聚糖与Cu2O纳米微粒能有效复合。以活性艳红X-3B溶液为模拟印染废水,采用Langmuir-Hinshelwood假一级方程模拟交联壳聚糖/Cu2O复合粒子光催化脱色反应的动力学行为,从动力学角度系统研究染料初始浓度、反应体系pH、催化剂用量和反应体系气氛等因素对复合粒子可见光催化脱色反应速率的影响。结果表明,当染料溶液浓度较低时,光催化过程可视为假一级反应。降低活性艳红X-3B初始浓度和pH,增加催化剂用量和反应体系的含O2量都可显著增加光解脱色反应速率常数。相同条件下,与纯Cu2O相比,交联壳聚糖/Cu2O复合粒子对X-3B呈现出更好的吸附性和更高的可见光催化活性。  相似文献   

11.
Nethaji S  Sivasamy A 《Chemosphere》2011,82(10):1367-1372
Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.5 and the maximum adsorption occurred at the pH 2.3. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Freundlich isotherm model best fitted the adsorption data and the Freundlich constants varied from (KF) 1.214, 1.077 and 0.884 for the three mesh sizes. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated for the adsorption processes and found that the adsorption process is feasible and it was the endothermic reaction. Adsorption kinetics was determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of AB10B onto lignocellulosic waste biomass from palm flower (LCBPF) followed pseudo second-order model, and the pseudo second-order rate constants varied from 0.059 to 0.006 (g mg−1 min) by varying initial adsorbate concentration from 25 mg L−1 to 100 mg L−1. Analysis of the adsorption data confirmed that the adsorption process not only followed intraparticle diffusion but also by the film diffusion mechanism.  相似文献   

12.

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

13.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on three different biochars derived from agricultural/forestry wastes through pyrolysis at various temperatures (100 to 500 ºC) were investigated. In this study, the H2S breakthrough capacity was measured using a laboratory-characterized using pH and Fourier transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H2S sorption. The sorption capacity of the biochar for H2S removal is related to the pyrolysis temperature and pH of the surface. Certain threshold ranges of the pyrolysis temperature (from 100 to 500 ºC) and pH of the surface are presented. It also concluded that the sorption capacity (for removing H2S) of rice hull-derived biochar is the largest in three biochars (camphor-derived biochar, rice hull-derived biochar, and bamboo-derived biochar). These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S.Implications: This paper focuses on the adsorption of hydrogen sulfide (H2S) by biochars derived from wastes. The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on three different boichars derived from agricultural/forestry wastes through pyrolysis at various temperatures were investigated. In this study, the H2S breakthrough capacity was measured using laboratory characterization with pH and Fourier-transform infrared spectroscopy analysis. The results obtained demonstrate that all biochars were effective in H2S sorption. The sorption capacity of the biochar for H2S removal is related to the pyrolysis temperature and pH of the surface.  相似文献   

14.

Water pollution caused by the discharged insolubility petroleum contaminants and organic compound dyes seriously threatens the natural self-purity capacity of the water body and the survival of aquatic species, so it is imperative to restraint the deterioration of the aquatic environment. In this paper, pathways are propounded for the simultaneous removal of insoluble spilling oil and organic dye contaminants. Particularly, hydrophobic ZnSnO3 after stearic acid modification and Bi2MoO6 photocatalysts are introduced into the cotton fabric substrate through solution dip-coating. The durability of the prepared fabric suffers from the acid–base corrosion, thermal treatment and mechanical wear, while still exhibiting remarkable water-repellent (WCA?>?150°) property. Furthermore, the remarkable photocatalytic activity makes it possible for reusable degradation and the primary active species, namely the holes, to be verified by the radicals-capturing experiment. It is worth observing that as-prepared superhydrophobic fabric possesses admirable water-proof property and cycling durability of decomposing toxic water-soluble organic dye, thereby contributing to further realizing the ecological concept of clear waters.

  相似文献   

15.
Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ~585 m2/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H2O2-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics.  相似文献   

16.
为研究建筑废物红砖和工业废物煤渣用作人工湿地脱氮基质的可行性,分别通过静态吸附实验和动态NH4+-N去除效果实验进行考察。结果表明,红砖和煤渣对NH4+-N最大静态吸附量分别为0.2533 mg/g和0.0533 mg/g,其吸附等温曲线均符合Freundlich型吸附方程,吸附常数分别为0.0419和0.0091;红砖煤渣组合对污水中NH4+-N平均动态脱除率达到41.18%,高于红砖的37.63%和煤渣的30.92%。  相似文献   

17.
This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L?1 and 12.0 g L?1, respectively. Under these optimal conditions, the removal efficiencies reached 90.23 % and 92.13 % for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.  相似文献   

18.
以工业水玻璃为硅源,采用六甲基二硅胺烷(HMDZ)作为改性剂,掺杂纳米级Fe3O4,通过溶胶-凝胶、常压干燥技术,制备得到赋磁硅气凝胶吸附材料(MSA)。采用红外光谱(FTIR)、扫描电镜(SEM)、比表面分析(BET)及振动样品磁强计(VSM)等方法对其结构进行了表征,并对其吸附性能进行研究。结果表明,制得的赋磁硅气凝胶接触角在113°~116°之间,比表面积可达589.79 m2/g,密度约为0.192 g/cm3,饱和磁化强度约为0.44 emu/g,具有超顺磁性。赋磁硅气凝胶对疏水性有机物异狄氏剂表现出良好的吸附性能,符合Freundlich等温吸附模型,KF为42.91;吸附动力学符合准二级动力学模型,吸附速率常数为0.0341 g/(mg.min)。  相似文献   

19.
采用蒸发壁式超临界水氧化反应器对染料分散红C.I.60和活性艳红M-2B配制的模拟废水进行降解实验.实验结果表明,2种染料的COD和TN去除率随着反应温度、氧化剂过量比(r)的升高而上升.COD去除率活性红要高于分散红,而TN去除率则相反.根据GC-MS分析和陶瓷膜SEM图像,分析测得2种染料主要反应中间产物均含有苯酚和苯甲酸,2种染料的反应对陶瓷膜均有轻微的腐蚀.  相似文献   

20.
Valix M  Cheung WH  McKay G 《Chemosphere》2004,56(5):493-501
Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号