首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Results are summarized of a comprehensive study of the effects on the SCR process of all major possible poisons encountered in the combustion gases from U.S. coals. A general rule evolved from this study Is that the effect of the additive on the catalyst activity Is directly related to the basicity of the additive; poisoning Is caused by the basicity. Quantitative effects are presented, while a qualitative summary is given as follows: strong poisons-alkali metal oxides; weak poisons-oxides of alkaline earth metals, arsenic, lead phosphorus and chlorides of strong alkaline metals. SO2 is a promoter due to its acidity. HCI, although acidic, reacts with both NH3 (forming NH4CI) and V2O5 (forming VCI2 and VCI3) and consequently strongly deactivates the SCR reaction.

A summary is also given for a theoretical and experimental study of the monolithic honeycomb reactor using both undoped and poison-doped catalysts. The results showed that the reactor performance can be predicted directly from the intrinsic catalyst activity through a model.  相似文献   

2.
Chiou CS  Chang CF  Chang CT  Shie JL  Chen YH 《Chemosphere》2006,62(5):788-795
Basic oxygen furnace slag (BOF slag) is a solid waste arisen from the steel making process. FeO is one of the major components of BOF slag. The FeO-containing property of BOF slag makes it possible to catalyze the Fenton reaction. Reactive Black 5 (RB5) dye is chosen as the target compound in this study. This study has investigated the catalytic performance of BOF slag on the Fenton reaction to decompose RB5 in aqueous solution. A first-order kinetic model with respect to TOC was adopted to explain the mineralization of RB5 by the H(2)O(2)/BOF slag process. The experimental results in this study suggested that dosage with 1.49 x 10(-4)M min(-1) H(2)O(2) and 12.5 g l(-1) BOF slag in the solution at pH 2 provided the optimal operation conditions for the mineralization of RB5 yielding a 51.2% treatment efficiency at 100 min reaction time, and complete decoloration can be achieved within 30 min reaction time. The H(2)O(2)/Fe(2+) ratio was then determined to be 6.06:1.  相似文献   

3.
Shon ZH  Kim KH  Bower KN  Lee G  Kim J 《Chemosphere》2004,55(8):1127-1142
In this study, we examined the influence of the long-range transport of dust particles and air pollutants on the photochemistry of OH and NO3 on Jeju Island, Korea (33.17 degrees N, 126.10 degrees E) during the Asian-dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26. Average concentration levels of daytime OH and nighttime NO3 on Jeju Island during the ADS period were estimated to be about 1x10(6) and 2x10(8) moleculescm(-3) ( approximately 9 pptv), respectively. OH levels during the ADS period were lower than those during the non-Asian-dust-storm (NADS) period by a factor of 1.5. This was likely to result from higher CO levels and the significant loading of dust particles, reducing the photolysis frequencies of ozone. Decreases in NO3 levels during the ADS period was likely to be determined mainly by the enhancement of the N2O5 heterogeneous reaction on dust aerosol surfaces. Averaged over 24 h, the reaction between HO2 and NO was the most important source of OH during the study period, followed by ozone photolysis, which contributed more than 95% of the total source. The reactions with CO, NO2, and non-methane hydrocarbons (NMHCs) during the study period were major sinks for OH. The reaction of N2O5 on aerosol surfaces was a more important sink for nighttime NO3 during the ADS due to the significant loading of dust particles. The reaction of NO3 with NMHCs and the gas-phase reaction of N2O5 with water vapor were both significant loss mechanisms during the study period, especially during the NADS. However, dry deposition of these oxidized nitrogen species and a heterogeneous reaction of NO3 were of no importance.  相似文献   

4.
Regional haze regulations require progress toward reducing atmospheric haze as measured by particle scattering coefficient of visible light. From a practical perspective, this raises the following question: Given a decrease in extinction, what is the probability that people will notice an improvement in visibility? This paper proposes a quantitative definition of the probability of a perceptible increase in visibility given a decrease in light extinction and a general method to estimate this probability from perception measurements made in the field under realistic conditions. Using data from a recent study of visibility perception by 8 observers, it is estimated that a 2-4 deciview change gives a 67% maximum probability of detecting the improvement. Stated another way, the odds of seeing a difference are at most 2:1 for a change of 2-4 deciviews. A 90% probability requires a change of at least 3.5-7.0 deciviews. The limitations and possible bias in the results of this study are discussed. These results may have a major effect on the cost-benefit analysis of regulatory actions to improve visibility.  相似文献   

5.
Measurement of ambient NO2 concentrations using diffusion tube samplers is widespread in many countries, particularly in the UK. A National Network of NO2 diffusion tube samplers has been operational at over 1200 sites in the UK for over 5 years. Some previous studies have indicated that NO2 diffusion tube samplers may overestimate NO2 concentrations by up to 30%, whereas others have shown an underestimation. Hence, the UK Department of Environment, Transport and the Regions commissioned this large-scale validation study. In this study diffusion tubes were exposed at 17 urban background monitoring sites equipped with chemiluminescent NO2 monitors within the UK Automatic Urban Monitoring Network. Over a one year period, diffusion tubes were exposed for 2- and 4-week periods, blacked out or clear and sheltered (from the wind) or unsheltered, in order to investigate the effect of a number of possible variables. The results of the study show that overall average NO2 concentrations calculated from diffusion tube measurements are likely to be within 10% of chemiluminescent measurement data. The uncertainty on this average difference is ±24–38% for individual diffusion tube measurements, but reduces to ±10–18% for annual averages. Differences due to the exposure period and exposure procedure were found, but these were not large.  相似文献   

6.
A comparative study is made of 12 methods of chemical oxidation applied to degrading p-hydroxybenzoic acid in aqueous solution. The oxidation processes tested were: UV, O3, UV/TiO2, O3/Fe2+, O3/H2O2, O3/UV, UV/H2O2, H2O2/Fe2+, H2O2/Fe2+/O3, UV/H2O2/O3, H2O2/Fe2+/UV and O3/UV/H2O2/Fe2+. The 12 processes were ranked by reactivity. In a kinetic study, the overall kinetic rate constant was split up into three components: direct oxidation by UV irradiation (photolysis), direct oxidation by ozone (ozonation), and oxidation by free radicals (mainly OH*).  相似文献   

7.
A new application of SEM/EDX-methods to study the distribution of air pollutants in the surroundings of an emission source is described. An energy dispersive X-ray microanalyzer (EDX) connected to a scanning electron microscope (SEM) was used to measure the amount of several elements on the surface of Scots pine bark. To test this method, bark samples were collected near a limestone quarry and plant. The results indicated that the pollutant gradient in the surroundings of the emission source was clearest, when this new method was used. The coefficient of determination (R2) for calcium on pine bark was as high as 0.99, whereas in the same study line, measurements of total Ca content of pine needles and soil humus yielded R2 values of 0.46 and 0.74, respectively.  相似文献   

8.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

9.
Land use regression (LUR) models have been widely used to characterize the spatial distribution of urban air pollution and estimate exposure in epidemiologic studies. However, spatial patterns of air pollution vary greatly between cities due to local source type and distribution. London, Ontario, Canada, is a medium-sized city with relatively few and isolated industrial point sources, which allowed the study to focus on the contribution of different transportation sectors to urban air pollution. This study used LUR models to estimate the spatial distribution of nitrogen dioxide (NO2) and to identify local sources influencing NO2 concentrations in London, ON. Passive air sampling was conducted at 50 locations throughout London over a 2-week period in May–June 2010. NO2 concentrations at the monitored locations ranged from 2.8 to 8.9 ppb, with a median of 5.2 ppb. Industrial land use, dwelling density, distance to highway, traffic density, and length of railways were significant predictors of NO2 concentrations in the final LUR model, which explained 78% of NO2 variability in London. Traffic and dwelling density explained most of the variation in NO2 concentrations, which is consistent with LUR models developed in other Canadian cities. We also observed the importance of local characteristics. Specifically, 17% of the variation was explained by distance to highways, which included the impacts of heavily traveled corridors transecting the southern periphery of the city. Two large railway yards and railway lines throughout central areas of the city explained 9% of NO2 variability. These results confirm the importance of traditional LUR variables and highlight the importance of including a broader array of local sources in LUR modeling. Finally, future analyses will use the model developed in this study to investigate the association between ambient air pollution and cardiovascular disease outcomes, including plaque burden, cholesterol, and hypertension.

Implications: Monitoring and modeling of NO2 throughout the city of London represents an important step toward assessing air pollution health effects in a mid-sized Canadian city. The study supports the introduction of railways to LUR modeling of NO2. Railways explained approximately 9% of the variability in ambient NO2 concentrations in London, which suggests that local sources captured by land-use indicators may contribute to the efficacy of LUR models. These findings provide insights relevant to other medium and smaller sized cities with similar land use and transportation infrastructure. Furthermore, London is a central hub for medical research and treatment in southwestern Ontario, with facilities such as the Robarts Research Institute, London Regional Cancer Program (LRCP), and Stroke Prevention & Atherosclerosis Research Centre (SPARC). The models developed in this study will provide estimates of exposure for future analyses examining air pollution health effects in this data-rich population.  相似文献   

10.
Zhang X  Sun H  Zhang Z  Niu Q  Chen Y  Crittenden JC 《Chemosphere》2007,67(1):160-166
In this study adsorption of Cd onto TiO2 nanoparticles and natural sediment particles (SP) were studied and the facilitated transports of Cd into carp by TiO2 nanoparticles and SP were assessed by bioaccumulation tests exposing carp (Cyprinus carpio) to Cd contaminated water in the presence of TiO2 and SP respectively. The results show that TiO2 nanoparticles had a significantly stronger adsorption capacity for Cd than SP. The presence of SP did not have significant influence on the accumulation of Cd in carp during the 25 d of exposure. However, the presence of TiO2 nanoparticles greatly enhanced the accumulation of Cd in carp. After 25 d of exposure Cd concentration in carp increased by 146%, and the value was 22.3 and 9.07 microg/g, respectively. And there is a positive correlation between Cd and TiO2 concentration. Considerable Cd and TiO2 accumulated in viscera and gills of the fish.  相似文献   

11.
Light-induced disappearance of nitrite in the presence of iron (III)   总被引:1,自引:0,他引:1  
Zhang H  Bartlett RJ 《Chemosphere》2000,40(4):411-418
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments.  相似文献   

12.
Liao CH  Lu MC  Su SH 《Chemosphere》2001,44(5):913-919
The purpose of this study is to reveal the role of cupric ions as a natural water contaminant in the H2O2/UV oxidation of humic acids. Humic acids are naturally occurring organic matter and exhibit a strong tendency of complexation with some transition metal ions. Chlorination of humic acids causes potential health hazards due to formation of trihalomethane (THM). The removal of THM precursors has become an issue of public concern. The H2O2/UV process is capable of mineralizing humic acids due to formation of a strong oxidant, hydroxyl radicals, in reaction solution. Experiments were conducted in a re-circulated photoreactor. Different cupric concentrations (0-3.8 mg/l) and different pH values (4-9) were controlled to determine their effects on the degradation of humic acids, UV light absorbance at 254 nm, and H2O2. The presence of cupric ions inhibits humic mineralization and decreases the rate of destruction of humic acids which absorb UV light at 254 nm. On the other hand, the higher the cupric concentration, the lower the H2O2 decomposition rate. In the studied pH range, the minimum of total organic carbon (TOC) removal occurs at pH = 6 in the presence of 2.6 mg/l of cupric ions; both acidification (pH = 4) and alkaline condition (pH = 9) lead to a better removal of TOC. It is inferred from this study that the cupric-complexed form of humic acids is more refractory than the non-complexed one.  相似文献   

13.
Complex interaction between anthropogenic activities, air quality and human health in urban areas, such as in Cracow sustains the need for the development of an interdisciplinary and integrated risk-assessment methodology. In such purpose, we propose a pilot study performed on asthmatics and based on a combined use of a biomarker, such as metallothionein 2A (MT-2A) in the characterization of human exposure to one or a mixture of pollutants and of Geographical Information Systems (G.I.S.) which integrates climatic and urban anthropogenic parameters in the assessment of spatio-temporal dispersion of air pollutants. Considering global incidence of air pollution on asthma and on peripheral blood lymphocytes MT-2A expression should provide a complementary information on biological risks linked to urban anthropogenic activities. Such study would help for the establishment of a sustainable development in urban areas that can maintain the integrity of air quality and preserve human health.  相似文献   

14.
Shon ZH  Kim KH  Swan H  Lee G  Kim YK 《Chemosphere》2005,58(2):149-161
This study examines the local/regional DMS oxidation chemistry on Jeju Island (33.17 degrees N, 126.10 degrees E) during the Asian dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26, respectively. For comparative purposes, a non-Asian-dust-storm (NADS) period was also considered in this study, which represents the entire measurement periods in April except the ADS events. The atmospheric concentrations of DMS and SO2 were measured at a ground station on Jeju Island, Korea, as part of the ACE-Asia intensive operation. DMS (means of 34-52 pptv) and SO2 (means of 0.96-1.14 ppbv) levels measured during the ADS period were higher than those (mean of 0.45 ppbv) during the NADS period. The enhanced DMS levels during the ADS period were likely due to the increase in DMS flux under reduced oxidant levels (OH and NO3). SO2 levels between the two contrasting periods were affected sensitively by some factors such as air mass origins. The diurnal variation patterns of DMS observed during the two periods were largely different from those seen in the background environment (e.g., the marine boundary layer (MBL)). In contrast to the MBL, the maximum DMS value during the ADS period was seen in the late afternoon at about sunset; this reversed pattern appears to be regulated by certain factors (e.g., enhanced NO3 oxidation). The sea-to-air fluxes of DMS between the ADS and NADS periods were calculated based on the mass-balance photochemical-modeling approach; their results were clearly distinguished with the values of 4.4 and 2.4 micromole m(-2) day(-1), respectively. This study confirmed that the contribution of DMS oxidation to observed SO2 levels on Jeju Island was not significant during our study period regardless of ADS or NADS periods.  相似文献   

15.
Although sulphur emissions (mainly as SO2) have been continuously decreasing over the last 20 years in most western industrialized countries, localized SO2 problems still exist in conjunction with strong local emission, meteorological, and topographical factors. In this study, the effect of supplementary installed flue gas desulphurization (FGD) units at high-capacity power plants on regional air pollution in the Carpathian Basin is investigated. The dispersion and accumulation of the SO2 air pollutant are studied with the regional three-dimensional on-line atmosphere-chemistry model REMOTE. The changes in the SO2 air pollution are investigated by parallel simulations in a case study, where the single modified parameter is the SO2 emission rate. The results show that FGD units significantly reduce the horizontal and the vertical dispersion of the emitted SO2, and its transboundary transport, too. Beside the SO2 removal efficiency, the dispersion and accumulation also depend on the seasonal weather conditions. During winter, the dispersion and accumulation are higher than in other seasons. Due to this phenomenon, higher SO2 removal efficiency is needed to guarantee similar air quality features like in the other seasons.  相似文献   

16.
Chen QM  Yang C  Goh NK  Teo KC  Chen B 《Chemosphere》2004,55(3):339-344
A study on the destruction of 1,3-dinitrobenzene (1,3-DNB) in aqueous solution was carried out under ultraviolet (UV) irradiation alone and UV irradiation in the presence of hydrogen peroxide (H2O2). The combination of UV and H2O2 is significantly effective in degrading 1,3-DNB in terms of initial reaction rate and the mineralization of organic carbons. The photodegradation process can be influenced in certain extent by increasing the content of H2O2 and the acidity of reaction matrices. It was found that a variety of phenolic intermediates and inorganic acid were formed via hydroxyl radicals attacking the parent compound. The UV/H2O2 oxidation of 1,3-DNB was characterized by pseudo-zero order reaction for the degradation of 1,3-DNB with a 20 times enhanced rate constant of 1.36 x 10(-7) Ms(-1) and the initial rate constant was dependent on the initial concentration of 1,3-DNB.  相似文献   

17.
Abstract

The objective of the present study was to assess the potential interactive effects of two Great Lakes chemical contaminants, hexachlorobenzene (HCB) and mercury (HgCl2). Groups of 10 female Sprague‐Dawley rats were administered by gavage single doses of HCB (400, 600 mg/kg b.w. in corn oil), HgCl2 (10.0, 12.5 mg/kg b.w. aqueous) or combinations of both followed by observation for clinical signs of toxicity for 14 days. Five animals from treatment groups died before the termination of the study; one animal each in 600 mg HCB, 400 mg HCB + 10 mg HgCl2, and 600 mg HCB + 10 mg HgCl2, and two animals in 600 mg HCB + 12.5 mg HgCl2. The surviving animals were necropsied at the termination of the study, and hematological, clinical chemistry, histopathological and tissue residue analyses were performed. Relative liver weights were increased in both low and high dose groups of HCB but not in animals treated with HgCl2 alone. Co‐administration of HgCl2 did not alter the HCB effects on the liver weight of the animals. Serum cholesterol levels were increased in all the groups receiving HCB but not HgCl2. No interactive effects on other serum parameters were seen in animals administered with both chemicals. Mild to moderate morphological changes occurred in the liver, thyroid, thymus, ovary and bone marrow of rats exposed to HCB or HCB + HgCl2, and in the kidney of HgCl2 or HgCl2 + HCB treated animals. More severe histological changes occurred in the groups receiving both chemicals. The histological effects appeared to be additive. It was concluded that co‐administration with HCB and HgCl2 resulted in additive effects in some of the endpoints measured but no synergism or antagonism was observed.  相似文献   

18.
Experiments on different annular denuder system (ADS) arrangements for sampling nitrous acid (HNO2) and nitric acid (HNO3) gases were conducted in this study to evaluate their sampling artifacts. The evaluation basis is the one that employed one sodium chloride denuder for sampling HNO3 gas and two sodium carbonate (Na2CO3) denuders for sampling HNO2 gas, which is a commonly employed ADS arrangement in many field applications in the United States. A field study was conducted in Hsinchu, Taiwan, and the results indicated that this ADS arrangement may yield over 80% relative errors for HNO3 gas. It also showed that the relative errors for HNO2 gas can be less than 10% as sampled with only one Na2CO3 denuder. This is attributed to the fact that the ambient HNO3 concentration measured in this study was relatively low while the HNO2 concentration was high, as compared to typical concentrations of these two gases measured in the United States. The sampling error of HNO3 gas may be due to high concentrations of N-containing interfering species present in Taiwan's atmosphere. Because the relative sampling errors of HNO3 and HNO2 gases depend mainly on their concentrations in the atmosphere as well as concentrations caused by interfering species, the risk for high error while measuring low HNO2 concentrations by only one Na2CO3 denuder is also possible. As a result, it is suggested that pretests are necessary to evaluate possible sources and degrees of sampling errors before field sampling of HNO2 and HNO3 gases. The sampling errors of these two gases can, therefore, be minimized with a better arrangement of the ADS.  相似文献   

19.
Luo Y  Su Y  Lin RZ  Shi HH  Wang XR 《Chemosphere》2006,65(6):1064-1073
In the present study, a secondary spin trapping technique was used followed by electron paramagnetic resonance (EPR) analysis, to study the potential of reactive oxygen species (ROS) production after fish (Carassius auratus) were injected i.p. with different doses (50, 100, 200, 250, 500mgkg(-1)) of 2-chlorophenol (2-CP). The ROS signal intensity of the EPR spectrum showed a significant increase (p<0.05, compared with the control) when the 2-CP dose was as low as 50mgkg(-1). There is a good relationship between the 2-CP administered doses and ROS generation. Based on the hyperfine splitting constants and shape of the EPR spectrum, the ROS which was generated in fish liver after intraperitoneal (i.p.) injection of 2-CP was identified as ()OH. SOD and CAT activities were found to be induced at lower doses of 2-CP. GSH levels fell below the control level following all treatments with 2-CP, and GSSG levels changed along with those of GSH. These observations indicated that the fish experienced oxidative stress. The strong positive correlation (r=0.966, p<0.005) between ()OH radical and lipid peroxidation suggested that lipid peroxidation was possibly induced by ()OH. The phase II detoxification enzyme glutathione-S-transferase (GST) may play an important role in 2-CP metabolism or excretion and, consequently, reduce ROS production. This study provides strong evidence that level of ROS is significantly increased in 2-CP stressed fish, and ROS may serve as a potential biomarker to indicate 2-CP contamination.  相似文献   

20.
Addition of organic wastes to agricultural soils is becoming a common practice as a disposal strategy and to improve the physical and chemical soil properties. However, in order to optimise the use of organic wastes as soil amendments, their effect on the behaviour of other compounds that are also used in agriculture, such as pesticides, needs to be assessed. In this work, we have investigated the effects of the addition of the final solid residue of the new technology of olive-oil extraction (extracted alperujo or solid olive-mill waste, SOMW2) on the sorption, degradation and leaching of the herbicide simazine in a sandy loam soil. The results are compared with those of a previous study, where the intermediary by-product of the olive-oil processing technology (unextracted alperujo or SOMW1) was applied to the same soil. The soil was amended in the laboratory with SOMW2 at two different rates (5% and 10% w/w). Simazine sorption isotherms showed a great increase in herbicide sorption after SOMW2 addition to soil. SOMW2 addition also increased sorption irreversibility. Incubation studies revealed reduced biodegradation of simazine in the soil amended with SOMW2 compared to the unamended soil. Breakthrough curves of simazine in handpacked soil columns showed that SOMW2 addition retarded the vertical movement of the herbicide through the soil and greatly reduced the amount of herbicide available for leaching. Interestingly, the results were quantitatively different from those obtained for the intermediary by-product SOMW1, illustrating the importance of the specific characteristics of the organic amendment in determining its effect on pesticide behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号