首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Han SK  Hwang TM  Yoon Y  Kang JW 《Chemosphere》2011,84(8):1095-1101
The generation of reactive species in an aqueous goethite suspension, under room light and aeration conditions, was investigated using the electron paramagnetic resonance (EPR) technique employing spin trap agents. The trap reagents, including 5,5-dimethylpyrroline N-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP), were used for the detection of OH radicals (OH) and singlet oxygen (1O2), respectively. On the addition of DMPO to the goethite suspended solution, a DMPO-OH adduct was formed, which was not decreased, even in the presence of the OH scavenger, mannitol. This result implied a false positive interpretation from the DMPO-OH EPR signal. In the presence of TEMP reagent, a TEMP-O signal was detected, which was completely inhibited in the presence of the singlet oxygen scavenger, sodium azide. With both DMPO-OH and TEMP-O radicals in the presence and absence of radical scavengers, singlet oxygen was observed to be the key species formed in the room-light sensitized goethite suspension. In the goethite/H2O2 system; however, both OH and singlet oxygen were generated, with significant portions of DMPO-OH resulting from both OH and singlet oxygen. In fact, the DMPO-OH resulting from OH should be carefully calculated by correcting for the amount of DMPO-OH due to singlet oxygen. This study reports, for the first time, that the goethite suspensions may also act as a natural sensitizer, such as fulvic acids, to form singlet oxygen.  相似文献   

2.
Ren X  Sun Y  Wu Z  Meng F  Cui Z 《Chemosphere》2012,88(1):39-48
The initial degradation mechanisms of OH and 4-chloro-2-methylphenoxyacetic acid (MCPA) including molecular form and anionic form are studied at the MPWB1K/6-311+G(3df, 2p)//MPWB1K/6-31+G(d, p) level. Possible reaction pathways of H-atom abstraction and OH addition are considered in detail. By result comparison analysis, it is found that the reaction mechanisms for OH and two forms of MCPA are different, and most reactions for anionic MCPA are easier than those for molecular MCPA. For H-atom abstraction reactions, the calculated energies show that OH abstracting H-atom from -CH3 group of molecular MCPA is the most kinetically favorable process; the potential energy surface for anionic MCPA indicates that H-atom in -CH2 group is slightly easier to be abstracted than that in -CH3 group. For OH addition reactions, the addition of OH to the C1 site is the initial step for molecular MCPA and the predominant product is 4-chloro-2-methylphenol (denoted P3), while the C4 site is the most reactive site for anionic MCPA and the primary product results from the hydroxylation of the aromatic ring, which is in good agreement with the experimental observation. In additional, results from PCM calculations show that most reactions in water phase are more kinetically favorable than those in gas phase, though the mechanisms discussed above will not be changed.  相似文献   

3.
4.
5.
6.
7.
With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L−1 FAs, the contributions of OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin.  相似文献   

8.
Liquid-chromatography interfaced with time-of-flight mass spectrometry (LC-TOF/MS) was used to separate and characterize the transformation products arising from TiO2-photocatalytic degradation of the fungicide Fenhexamid (FEX) in aqueous solution under simulated solar irradiation. Prior to identification, irradiated solutions of FEX (10 mg L−1) were concentrated by solid-phase extraction. Assignments of the mass spectra ions were aided by elemental composition calculations, comparison of structural analogues and available literature, and acquired knowledge regarding mass spectrometry of related heterocyclic compounds. The primary transformation intermediates identified were hydroxyl and/or keto-derivatives. Several positional isomers are typically produced as a consequence of the non-selectivity of the OH radical attack. Moreover, products resulted from the cleavage of the amide and NHdichlorophenol bonds were formed. Finally, cyclic - benzo[d]oxazole intermediates are also formed through an intramolecular photocyclization process and cleavage of halogen - carbon bond. In the case of the hydroxy and/or keto-derivatives, the generic fragmentation scheme obtained from the interpretation of the ESI-TOF-MS data cannot be diagnostic to precisely localize the position of the entering substituent on the FEX molecule, and thus to characterize all its possible oxygenated derivatives by assigning a plausible structure with confidence. On the basis of identified products different pathways of photocatalytic degradation of FEX were proposed and discussed.  相似文献   

9.
10.
Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH2N-C(N-NO2)-CHN-CHO or its isomer N(NO2)CH-CHN-CO-CHNH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil.  相似文献   

11.
12.
13.
The effluents of wastewater treatment plants, usually directly emitted to the environment, often contain the anti-inflammatory drug diclofenac (DCF). The paper investigates DCF elimination using irradiation technology. Hydroxyl radical and hydrated electron reactive intermediates resulting from water radiolysis effectively degrade DCF and strongly reduce the toxicity of the solutions. OH attaches to one of the rings of DCF, and hydroxylated molecules, 2,6-dichloroaniline and quinoid type compounds are the products. Hydrated electron adds to the chlorine atom containing ring, in the reaction quinoid type compounds and 4-chloroacridine form. At a 0.1 mM DCF concentration, a ∼1 kGy absorbed dose is needed for the degradation of DCF molecules, but for mineralization of the products (in presence of O2) an order of magnitude higher dose is required.For irradiation of wastewater after biological treatment a ∼1 kGy dose is suggested. At this dose DCF and other drugs or metabolites present at μg L−1 level are eliminated together with microorganism deactivation.  相似文献   

14.
Li Y  Niu J  Wang W 《Chemosphere》2011,85(5):892-897
Photolysis of Enro in water was investigated under simulated sunlight irradiation using a Xenon lamp. The results showed that Enro photolysis followed apparent first-order kinetics. Increasing Enro concentration from 5.0 to 40.0 mg L−1 led to the decrease of the photolysis rate constant from 1.6 × 10−2 to 3.0 × 10−3 min−1. Compared with the acidic and basic conditions, the photolysis rate was faster at neutral condition. Both of nitrate and humic acid can markedly decrease the photolysis rate of Enro because they can competitively absorb photons with Enro. The electron spin resonance and reactive oxygen species scavenging experiments indicated that Enro underwent self-sensitized photooxidation via OH and 1O2. After irradiation for 90 min, only 13.1% reduction of TOC occurred in spite of fast photolysis of 58.9% of Enro, indicating that Enro was transformed into intermediates without complete mineralization. The photolysis of Enro involved three main pathways: decarboxylation, defluorination, and piperazinyl N4-dealkylation. The bioluminescence inhibition rate using Vibrio fischeri increased to 67.2% at 60 min and then decreased to 56.9% at 90 min, indicative of the generation of some more toxic intermediates than Enro and then the degradation of the intermediates. The results will help us understand fundamental mechanisms of Enro photolysis and provide insight into the potential fate and transformation of Enro in surface waters.  相似文献   

15.
16.
This article examines the thermal decomposition of alpha-cypermethrin, one of the most common pyrethroid pesticides. The objective was to identify its decomposition pathways and to gain an understanding into the formation of toxic species in the environment, including those that may behave in combustion systems, especially in fires in the environment, as precursors for PCDD/F (polychlorinated dibenzo-p-dioxins and dibenzofurans). The experiments were conducted under non-oxidative conditions using a tubular reactor housed in a three-zone heating furnace and operated with a dilute stream of alpha-cypermethrin in 99.999% nitrogen. The condensable products were identified and quantitated, after being collected in a cold solvent trap and in an activated charcoal cartridge. The study revealed the formation of pollutants including precursors of toxic PCDD/F such as diphenyl ether and phenol. It was also found that the decomposition of alpha-cypermethrin involved parallel pathways of an unusual vinylcyclopropane rearrangement-cum-aromatisation reaction transforming alpha-cypermethrin and a rupture of the C(O)OC(CN) linkage. The former is similar to that occurring in the decomposition of permethrin pesticide, whereas the latter constitutes a newly discovered channel for the formation of pollutants. Density functional theory (DFT) calculations allowed us to attribute the occurrence of the second pathway to the effect of the cyanide group in significantly weakening the OC bond.  相似文献   

17.
We assessed the extent to which constituents of PM2.5 (transition metals, sodium, chloride) contribute to the ability to generate hydroxyl radicals (OH) in vitro in PM2.5 sampled at 20 locations in 19 European centres participating in the European Community Respiratory Health Survey. PM2.5 samples (n = 716) were collected on filters over one year and the oxidative activity of particle suspensions obtained from these filters was then assessed by measuring their ability to generate OH in the presence of hydrogen peroxide. Associations between OH formation and the studied PM constituents were heterogeneous. The total explained variance ranged from 85% in Norwich to only 6% in Albacete. Among the 20 centres, 15 showed positive correlations between one or more of the measured transition metals (copper, iron, manganese, lead, vanadium and titanium) and OH formation. In 9 of 20 centres OH formation was negatively associated with chloride, and in 3 centres with sodium. Across 19 European cities, elements which explained the largest variations in OH formation were chloride, iron and sodium.  相似文献   

18.
Parameters that influence the zero valent iron mediated degradation of the pharmaceutical diazepam (DZP) were evaluated including the iron concentration and its pre-treatment, the effect of complexation with EDTA and oxic versus anoxic condition. It was observed that acid pre-treatment of iron particles is important for degradation efficiency and that H2SO4 is a better choice than HCl, resulting in higher degradation of DZP. Under oxic conditions, the degradation of DZP achieved 96% after 60 min using Fe0 (25 g L−1) pre-treated with H2SO4 in the presence of EDTA (119 mg L−1), while mineralization achieved around 60% after the same time. Under anoxic conditions, degradation occurred, however at lower extent, achieving 67% after 120 min. The addition of EDTA improved the treatment efficiency in 20% leading to 99% DZP degradation after 120 min. The first intermediates formed during DZP degradation were identified using LC/MS analysis and revealed the formation of mono- and di-hydroxylated products from DZP during Fe0/EDTA/O2 degradation, which evidences that OH was the main oxidizing species formed in this process.  相似文献   

19.
Ji Y  Zeng C  Ferronato C  Chovelon JM  Yang X 《Chemosphere》2012,88(5):644-649
The extensive utilization of β-blockers worldwide led to frequent detection in natural water. In this study the photolysis behavior of atenolol (ATL) and toxicity of its photodegradation products were investigated in the presence of nitrate ions. The results showed that ATL photodegradation followed pseudo-first-order kinetics upon simulated solar irradiation. The photodegradation was found to be dependent on nitrate concentration and increasing the nitrate from 0.5 mM L−1 to 10 mM L−1 led to the enhancement of rate constant from 0.00101 min−1 to 0.00716 min−1. Hydroxyl radical was determined to play a key role in the photolysis process by using isopropanol as molecular probe. Increasing the solution pH from 4.8 to 10.4, the photodegradation rate slightly decreased from 0.00246 min−1 to 0.00195 min−1, probably due to pH-dependent effect of nitrate-induced OH formation. Bicarbonate decreased the photodegradation of ATL in the presence of nitrate ions mainly through pH effect, while humic substance inhibited the photodegradation via both attenuating light and competing radicals. Upon irradiation for 240 min, only 10% reduction of total organic carbon (TOC) can be achieved in spite of 72% transformation rate of ATL, implying a majority of ATL transformed into intermediate products rather than complete mineralization. The main photoproducts of ATL were identified by using solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) techniques and possible nitrate-induced photodegradation pathways were proposed. The toxicity of the phototransformation products was evaluated using aquatic species Daphnia magna, and the results revealed that photodegradation was an effective mechanism for ATL toxicity reduction in natural waters.  相似文献   

20.
Li T  Xu Z  Han X  Yang X  Sparks DL 《Chemosphere》2012,88(5):570-576
Pot experiments were performed to investigate the characteristics of dissolved organic matter (DOM) in the rhizosphere soil of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on the mobility of zinc (Zn). DOM was fractionated using XAD resins into six fractions. The acid fraction was the predominant component of DOM in the rhizosphere of S. alfredii, with hydrophilic acid (HiA), hydrophilic base (HiB), and hydrophilic neutral (HiN) in HE-DOM being 1.6, 1.9, and 1.2 times higher respectively, as compared to NHE-DOM. ATR-FTIR results showed that DOM in the rhizosphere of S. alfredii consisted of a mixture of hydroxylated and carboxylic acids, and HE-DOM exhibited more CO, OH, CC and CO functional groups than NHE-DOM. Resin equilibration experiment results indicated that DOM from the rhizosphere of both ecotypes of S. alfredii had the ability to form complexes with Zn, whereas the degree of complexation was significantly higher for HE-DOM (60%) than NHE-DOM (42%). The addition of HE-DOM significantly (P < 0.05) increased the solubility of four Zn minerals while NHE-DOM was not as effective at the same concentration. It was concluded that DOM derived from the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Zn mobility through the formation of soluble DOM-metal complexes, this might be one of the important mechanism by which S. alfredii is involved in activating metal in rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号