首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明,当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L~(-1),COD值为4 000~5 000 mg·L~(-1)时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m~3·d)~(-1)、总氮去除率可达93.1%(出水TN=176.3 mg·L~(-1))、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中NO_x~--N浓度为154.5 mg·L~(-1),仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L~(-1))。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水NH_4~+-N、NO_2~--N、NO_3~--N平均浓度分别为1.9、0.6、9.7 mg·L~(-1),TN≤15 mg·L~(-1),进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

2.
采用SBR反应器,接种好氧硝化污泥,在142 d内于较高负荷下成功启动了厌氧氨氧化反应器.反应器总氮容积负荷(以N计)为0.43 kg/m3·d,总氮去除率最高达到93.3%,平均为80.5%;氨氮和亚硝酸盐氮的去除率最高达到93.9%和99.8%,平均去除率为81.2%和85.7%.在稳定运行阶段,氨氮去除量、亚硝酸盐氮去除量、硝酸盐氮生成量三者之间的比值为1:1.38:0.18.反应器启动过程中,出水、进水pH差值的变化趋势由负到正,然后稳定在一定范围内;且污泥性状有较大变化,污泥中微生物所占比率有所提高,整个反应器中适应厌氧氨氧化运行方式的菌种增殖较快.  相似文献   

3.
为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO-2-N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L~(-1)、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO-2-N积累率、NO-2-N/NH+4-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH+4-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH+4-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。  相似文献   

4.
利用硫化物对亚硝酸盐氧化菌的抑制作用,快速建立短程硝化。通过改变供氧条件,硫化物作为电子供体推动自养反硝化,实现同一序批反应器一体化脱氮。采用序批反应器SBR处理模拟市政污水,在DO浓度(1.5±0.5)mg·L~(-1),硫化物浓度50 mg·L~(-1),温度25℃,水力停留时间12 h的条件下,共运行90 d,控制反应器厌氧低氧时间,达到90%以上的总氮去除率。同时研究了硫化物对短程硝化的抑制作用、最适宜运行p H条件、污泥颗粒大小变化、污泥产生量等。硫化物抑制亚硝酸盐氧化菌推动短程硝化反硝化生物脱氮技术有着反应条件可控性高、短程硝化建立时间短、脱氮效果好等优点,适用于低碳氮比的市政污水处理。  相似文献   

5.
利用氮素计量关系和批式实验研究了SBR系统中基于短程硝化的单级自养脱氮特性和脱氮途径。结果表明,SBR系统获得良好脱氮效果,TN最高去除负荷和去除速率分别达0.49 kg N/(m3.d)和0.20 kg N/(kg VSS.d);系统中82%的氨氮转化成气体脱除,10%的氨氮转化成硝酸盐氮。批式实验结果表明,SBR系统中的污泥同时具有厌氧氨氧化、亚硝酸盐氧化和自养反硝化活性,三者的反应速率分别为0.12 kg NH4+-N/(kg VSS.d)、0.04 kg NO2--N/(kg VSS.d)和0.03 kg NO2--N/(kg VSS.d)。综上,SBR系统中氮的脱除是短程硝化、厌氧氨氧化和反硝化共同作用的结果,产生的硝酸盐是厌氧氨氧化和硝化作用所致。  相似文献   

6.
采用A/O-CSTR工艺处理高氨氮污泥脱水液。进水氨氮浓度浓度约为375 mg/L,C/N比小于1.0,反硝化碳源明显不足。A/O反应器完成短程硝化反应,CSTR定期投加初沉污泥作为碳源进行反硝化。两者联合达到总氮去除的目的。实验研究短程硝化反应的启动过程,以及CSTR出水回流对短程硝化和系统脱氮效果的影响。实验结果表明系统具有良好的硝化反硝化效果。A/O反应器亚硝酸盐积累率迅速提高并稳定在90%以上。CSTR有效利用初沉污泥实现了稳定的反硝化。出水回流有利于提高总氮去除率,在回流比为200%时,系统平均总氮去除率达到85%以上。  相似文献   

7.
在高氨氮废水中,为了实现序批式活性污泥反应器(SBR)短程硝化的快速启动及稳定运行,采用DO与游离氨(FA)联合控制的策略进行调控。结果表明:控制DO为1.42~1.53mg/L,曝气时间为3.5h,将初始FA平均值从1.75mg/L提高至8.74mg/L,经过30d的运行,亚硝酸盐氮积累率达到75.71%,氨氮去除率稳定在80%左右,可以实现快速启动;进一步将DO提高至1.77~1.90mg/L,曝气时间降低至2.5h,可实现长达61d的稳定运行,氨氮平均去除率维持在85.70%,亚硝酸盐氮积累率平均达到91.80%。因此,FA和DO联合调控可抑制亚硝酸盐氧化菌活性,促进氨氧化菌增殖,可以实现短程硝化的快速启动及稳定运行。  相似文献   

8.
采用序批式生物膜反应器(SBBR)处理畜禽废水,在室温(9~18℃)下,采用8 h/周期、交替停曝气的模式运行,控制曝气阶段DO浓度在2 mg/L,可实现明显的亚硝酸盐积累,氨氮及总氮的去除率分别可达(95.1±0.8)%和(87.2±0.6)%。为揭示SBBR中细菌种群构成及其动态变化规律,采用PCR-DGGE技术进行了细菌多样性分析,并构建了系统发育树,结果表明:与接种污泥相比,驯化期生物膜中细菌种群丰富度未发生明显变化,运行期交替曝气、停曝模式有助于提高生物膜中细菌的多样性指数,但受运行模式及氨氮负荷变化影响,运行期氨氧化菌多样性指数略低于驯化期;生物膜内存在一些具有反硝化功能的变形菌和特殊的氨氧化细菌,在本实验条件下未发现厌氧氨氧化菌,说明主要脱氮机理为同时短程硝化反硝化。  相似文献   

9.
炭管膜曝气生物膜反应器SNAD脱氮研究   总被引:1,自引:0,他引:1  
以包裹无纺布的微孔炭管作为膜曝气生物膜反应器(MABR)的膜组件,进行了短程硝化,厌氧氨氧化和反硝化耦合脱氮(SNAD)研究。实验中,控制温度34±1℃,pH 7.5~8.5, HRT 8 h,通过逐步降低膜内压力使反应器中的溶解氧由8 mg/L逐步降低到0.5 mg/L以下。实验采用亚硝酸细菌挂膜,然后接种厌氧氨氧化细菌,实现在单一反应器中同时发生短程硝化、厌氧氨氧化和反硝化耦合脱氮功能。结果表明,经过180 d的连续稳定运行,氨氮去除率达到了93.4%,总氮去除率达到了92.5%,COD去除率达到97.2%, 氨氮去除负荷0.6 kg N/(m3 ·d)。适合SNAD工艺的最佳C/N比为0.2~0.6,当COD浓度过高时,会抑制厌氧氨氧化细菌,使SNAD工艺的处理效果明显下降。  相似文献   

10.
微生物燃料电池(MFC)可在阴极实现反硝化、短程反硝化和同步硝化反硝化并产生电能,但在MFC阴极实现同步短程硝化反硝化的研究尚未见到报道。为了探讨MFC阴极同步短程硝化反硝化工艺的性能,将双室曝气阴极MFC与A/O脱氮工艺结合处理人工模拟低碳氮比废水。通过静置运行15 d使得MFC阴极室亚硝态氮得以积累,氨氧化菌得以富集。随即改为连续运行后第21天成功启动同步短程硝化反硝化MFC;阴极出水氨氮浓度为0.3 mg/L,亚硝态氮浓度为15.9 mg/L,硝态氮浓度为0.6 mg/L,亚硝化率达到95%以上,阴极电极自养反硝化去除率达到50%以上,COD去除率达到85%以上。结果表明,将MFC与同步短程硝化反硝化工艺结合,通过阴极室中氧气得电子获得高p H,可以强化同步短程硝化反硝化工艺,完成生物脱氮的同时回收电能,并具有减少外加碱度的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号