首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 17 毫秒
1.
胡怡  宋永会  钱锋 《环境工程学报》2012,6(9):3019-3024
以赤泥为晶种,研究不同工艺条件对磷酸铵镁(MAP)结晶法回收模拟废水中磷的影响。结果表明,在投加赤泥(60~80目)8 g/L,搅拌速度为180 r/min,搅拌时间30 min,沉淀时间30 min,N∶Mg∶P=1∶1∶1的条件下磷酸根离子的回收率随初始磷酸盐浓度的增加而增大,在初始磷酸盐浓度小于90 mg/L时增幅较大,初始磷酸盐浓度大于90 mg/L后增幅减小;pH值对磷酸根离子的回收率影响显著,结合铵根离子、镁离子的回收率变化,pH值为9.5时最优;磷酸根离子的回收率随着Mg∶P摩尔比和N∶P摩尔比增大而呈上升趋势,当Mg∶P摩尔比为1.4∶1、N∶P摩尔比为4∶1时,磷酸盐的回收率可达97.9%。运用扫描电子显微镜(SEM)、X射线能谱仪(EDS)和X射线衍射仪(XRD)对最优工艺条件下的结晶产物进行了表征,表明磷主要以磷酸铵镁形态回收。  相似文献   

2.
为研究吸附剂对正态磷酸盐、非正态磷酸盐的吸附特征,以及正态磷酸盐和非正态磷酸盐混合体系下的竞争吸附行为,制备出3种改性蒙脱石SWy-焙烧、SWy-Al、SWy-Fe,将其分别用于对不同形态的磷酸盐吸附实验中。结果表明,制备的3种改性蒙脱石对磷的吸附效果均有所提升。SWy-Fe的吸附效果最佳,对正态磷酸盐和非正态磷酸盐4 h吸附去除率分别提高了56.1%和55.3%,实验结果符合Ho拟二级吸附动力学方程。根据Langmuir吸附热力学方程,对正态磷酸盐和非正态磷酸盐的饱和吸附量分别为21.9 mg·g~(-1)和18.8 mg·g~(-1)。此外,在初始总磷浓度高于3.0 mg·L~(-1)的条件下,正态磷酸盐和非正态磷酸盐混合体系中的非正态磷酸盐吸附量显著高于正态磷酸盐,二者单位平衡吸附量之比为2.9∶1.0。改性蒙脱石对正态磷酸盐和非正态磷酸盐的吸附结果均表现为吸附外部液膜扩散、表面吸附、颗粒内扩散等多种过程的综合作用,可交换阳离子Ca~(2+)/Fe~(3+)/Al~(3+)的引入通过吸附络合作用提高了蒙脱石对磷酸盐的吸附能力。在初始总磷浓度高于3.0 mg·L~(-1)的条件下,正态磷酸盐和非正态磷酸盐混合体系存在吸附竞争现象,这为实际处理含磷废水吸附技术的发展和应用提供了理论依据。  相似文献   

3.
为研究两性-阳离子表面活性剂复合改性膨润土的吸附除磷性能及其机理,采用不同比例两性表面活性剂——十二烷基二甲基磺丙基甜菜碱(DSB)和阳离子表面活性剂溴代十六烷基吡啶(CPB)对膨润土进行了有机复合改性,制得DSB+CPB复合改性膨润土,利用X射线衍射分析(XRD)、傅里叶红外分析(FT-IR)、扫描电子显微镜(SEM)、接触角(CA)以及热重分析(TGA)等手段对膨润土土样进行了表征,并用吸附等温模型和动力学方程拟合其吸附过程,探讨了改性比例、pH和温度等因素对吸附的影响。结果表明:DSB改性能提高膨润土对磷酸盐的吸附能力,当加入CPB复合改性后,可进一步促进DSB改性膨润土对磷酸盐的吸附能力,且吸附能力均随改性比例的增大而增强;对于0.5 DSB和1.0 DSB的改性膨润土,其与CPB最佳复合比例均为DSB+1.5CPB,最大吸附量分别为原土的7.81倍和8.19倍;改性膨润土对磷酸盐的吸附均符合Langmuir等温模型和伪二级吸附动力学方程,其吸附能力随pH的升高而降低,且吸附为物理和化学吸附同时存在的自发吸热熵增过程。上述研究结果可为两性-阳离子表面活性剂复合改性膨润土吸附除磷提供参考。  相似文献   

4.
尤星怡  冯鑫  潘杨  黄勇  徐林建 《环境工程学报》2019,13(10):2426-2433
针对同步去除与富集磷酸盐溶液的问题,研究了在低磷环境和低磷高磷交替环境下悬浮填料生物膜反应器的除磷能力和释磷能力,采用扫描电子显微镜(SEM)和高通量测序对第0、45和95天的污泥进行了表征。结果表明:低磷环境下好氧出水磷酸盐浓度稳定在0.5 mg·L~(-1)以下,厌氧阶段的最大释磷量为6.05 mg·L~(-1);在低磷高磷交替环境中,好氧出水磷酸盐浓度基本在0.5 mg·L~(-1)以下,富磷溶液浓度最高可达63 mg·L~(-1)。SEM结果表明,同步去除与富集磷酸盐的悬浮填料生物膜反应器中的主要微生物是杆状菌。高通量测序结果表明:第0、45和95天的变形菌门(Proteobacteria)的相对丰度分别为48.3%、57.1%和89.1%,占主导地位;而红环菌科(Rhodocyclaceae)的相对丰度分别为18.1%、19.0%和30.8%,是反应器中的优势菌科;动胶菌属(Zoogloea)是同步去除与富集磷酸盐的悬浮填料生物膜工艺中的主要功能菌。在悬浮填料生物膜工艺中,低磷高磷交替的生长环境下培养的聚磷生物膜能够使好氧出水的磷酸盐浓度达到国家排放标准,并在厌氧阶段得到高浓度的磷酸盐富集溶液,且这种生长环境更适合聚磷微生物的生长。  相似文献   

5.
采用模拟废水,在UASB反应器中研究磷酸盐对厌氧氨氧化(Anammox)工艺的长期影响,考察了厌氧氨氧化反应器处理高磷酸盐、高浓度含氮废水的可行性。结果表明:当磷酸盐在进水中的浓度低于750 mg·L~(-1)(25.8 mmol·L~(-1))时,Anammox工艺的脱氮效果较好,且磷酸盐浓度对废水中氮的去除及转化效果影响不大,当磷酸盐浓度增至800 mg·L~(-1)(25.8 mmol·L~(-1))时,Anammox工艺的脱氮性能被抑制,NH+4-N的去除率从96.5%降至74.1%,NO-2-N从97.8%降至75.6%,NRR(nitrogen removal rate)从5.7 kg·(m3·d)-1降至4.4 kg·(m3·d)-1。停止投加磷酸盐后,反应器的脱氮性能得到快速恢复。  相似文献   

6.
通过成核/晶化隔离法制备了氯离子型镁铝层状双金属氢氧化物(Mg-Al-Cl-LDH),并用于磷酸盐的吸附;借助扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、X射线光电子能谱(XPS)进行了表征,并探究其吸附磷酸盐的机理.结果表明:当pH为4~7时,Mg-Al-Cl-LDH对磷的吸附效果较好,而在碱性条件下吸附量会下降;磷质量浓度为50mg·L-1,当pH为5时,Mg-Al-Cl-LDH投加量为2g·L-1时,磷去除率可达到100%;共存离子CO32-会对吸附产生一定影响,当CO32-质量浓度为50mg·L-1时,磷去除率由87%降低到63%.Mg-Al-Cl-LDH对磷的吸附过程在前15 min迅速,90min时达到平衡,符合准二级动力学和Sips吸附等温模型,说明主要吸附过程以化学吸附为主,理论最大吸附量为62.46mg·g-1o表征结果表明,Mg-Al-Cl-LDH为典型的六边形层片结构,吸附后依旧保持该结构.Mg-Al-Cl-LDH对磷的吸附机理主要为静电吸引、层间阴离子交换、配体交换过程.  相似文献   

7.
为了开发一种新型高效的除磷吸附剂,通过甲酰胺一步合成法制备了不同镁铝反应物浓度的水滑石纳米片(LDHns-F1~4),并利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)等技术对LDHns-F的形貌进行了表征。结果表明,该方法成功合成了超薄水滑石纳米片,横向尺寸约30 nm,呈板状形貌和六角形微晶的特点。冷干后的水滑石纳米片具有水滑石XRD特征峰,干燥过程会造成纳米片的部分堆叠。等温吸附实验结果表明,纳米片LDHns-F3(镁铝反应物摩尔浓度为0.08、0.04 mol·L-1)对磷酸盐的饱和最大吸附量为128.0 mg·g-1,固磷能力比层状水滑石LDH-P提高61%。吸附反应在15 min后达到平衡,吸附动力学符合伪二级动力学方程,表明化学吸附可能是LDHns-F3吸附磷酸根的速率控制步骤。通过Zeta电位和X射线光电子能谱(XPS)对吸附机制进行分析,结果表明磷酸盐在水滑石纳米片层板表面通过羟基络合形成了内层络合物。水滑石纳米片层表面存在的大量羟基使其对含氧阴离子型污染物具有良好的吸附性能,在高浓度含磷水体处理中具有广阔的应用前景。  相似文献   

8.
三氯硫磷作为重要的农药中间体,在生产过程中可能产生高浓度Al~(3+)与磷酸盐共存的强酸性废水,有效分离Al~(3+)与磷酸盐并进一步分别对其回收利用具有重要意义。围绕上述问题,选择001×7强酸型苯乙烯系阳离子交换树脂,研究了Al~(3+)与磷酸盐在单一和共存体系下的动态吸附交换行为。研究发现,该树脂对Al~(3+)有良好的吸附性能,Al~(3+)穿透曲线表现为典型的"S"型,采用Thomas模型可以很好地模拟Al~(3+)吸附过程。当初始Al~(3+)浓度([Al~(3+)]0)为1 000 mg·L~(-1)且流速为4、6和10 BV·h~(-1)时,穿透交换容量(Al~(3+)平衡浓度为10 mg·L~(-1))分别为14.08、12.16和11.09 mg·g~(-1);磷酸盐的存在促进了Al~(3+)的交换,当体系存在4 300 mg·L~(-1)磷酸盐时,穿透交换容量分别提高了16.50%、9.61%和6.37%。对于吸附饱和的树脂,采用4%HCl溶液可达到98.3%再生率。采用阳离子交换树脂分离Al~(3+)与磷酸盐共存废水,这可能是实现二者分离与后续回收的有效手段之一。  相似文献   

9.
选取云南阳宗海湖滨湿地沉积物为研究对象,以阳宗海农田土壤为对照,通过室内模拟实验,研究不同砷污染程度的沉积物对磷酸盐吸附的差异及影响因素。结果表明:(1)低浓度磷酸盐时吸附能力为底层沉积物表层沉积物农田土壤;高浓度磷酸盐时吸附能力为表层沉积物底层沉积物农田土壤;主要与沉积物表面的吸附点位的分布差异有关。(2)砷污染沉积物中活性态砷的含量及水体pH是影响沉积物富集磷的重要因素。(3)可还原态砷、水体pH、弱酸提取态砷对磷酸盐的吸附有重要贡献。  相似文献   

10.
简介水中磷酸盐的测定可分为可溶性磷酸盐及全磷两部分。测定全磷时可采用高氯酸—硝酸;硝酸—硫酸;或用过硫酸盐消解氧化,使水中各种状态的磷酸盐及有机磷化合物转化为正磷酸盐后测定。砷(V)的干拢可加除砷剂消除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号