首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH?=?8.2), moderate organic content (DOC?=?152 mg C L?1, COD?=?684 mg O2 L?1) and low-moderate biodegradability (40 % after 28 days in Zahn–Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe2+ L?1, leading to 98.5 % decolorization and 85.5 % mineralization after less than 0.1 and 5.8 kJUV L?1, respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L?1 (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L?1, consuming 7.5 mM hydrogen peroxide, resulting in 58.4 % of mineralization $ \left({t}_{30\mathrm{W}}=3.2\ \min; \overline{T}=30.7\ {}^{\circ}\mathrm{C};\overline{\mathrm{pH}}=2.80;{\overline{\mathrm{UV}}}_{G,n}={13\ \mathrm{W}\ \mathrm{m}}^{-2}\right). $   相似文献   

2.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

3.
A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 2?/Al3 + mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5?×?105 to 20?×?105 Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r?=?0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L?1), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS–PDADMAC treatment (0.8 mg L?1?+?20 mg L?1). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.  相似文献   

4.
In a hydroponic culture, experiments were performed to study the influence of potassium (K) supplementation (0, 20, 40, 60, 80, and 100 mg L?1) on the arsenic (As; 0, 8, and 10 mg L?1)-accrued changes in growth traits (plant biomass, root–shoot length) and the contents of lepidine, As and K, in garden cress (Lepidium sativum Linn.) at 10 days after treatment. The changes in these traits were correlated with shoot proline content, protein profile, and the activities of antioxidant enzymes namely superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.8.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11). In general, As-alone treatments significantly decreased the growth traits but lead to significant enhancements in shoot proline and enzyme activities. K-supplementation to As-treated L. sativum seedlings decreased shoot-As content, reduced As-induced decreases in growth traits but enhanced the content of shoot proline, and the activities of the studied enzymes maximally with K100 + As8 and As10 mg L?1. Both 8 and 10 mg L?1 of As drastically downregulated the shoot proteins ranging from 43–65 kDa. With As10 mg L?1, there was a total depletion of protein bands below 23 kDa; however, K80 mg L?1 maximally recovered and upregulated the protein bands. Additionally, protein bands were downregulated (at par with As-alone treatment) above K80 mg L?1 level. Interestingly, As-stress increased lepidine content in a dose-dependent manner which was further augmented with the K-supplementation. It is suggested that K protects L. sativum against As-toxicity by decreasing its accumulation and strengthening antioxidant defense system and protein stability.  相似文献   

5.
This paper analyzes the effect of exogenous urea in increased concentration gradient (0, 100, 500 and 1,000 mg L?1) on photosynthetic pigments (measured spectrophotometrically), uptake of 14CO2 (using radioisotope), and urease activity (by measuring ammonia with Nessler’s reagent) in leaves of Elodea densa Planch. We have observed that low concentration of urea (100 mg L?1) stimulates the accumulation of photosynthetic pigments and intensifies photosynthesis in E. densa, whereas high concentration (1,000 mg L?1) suppresses these processes. Urease activity increased by approximately 2.7 and 8 fold when exogenous urea concentrations were 100 and 500 mg L?1, respectively. However, exogenous urea in high concentration (1,000 mg L?1) decreased urease activity by 1.5 fold compared to the control. The necessity of mitigating urea and other nitrogen-containing compounds (NH3 from urea) in water bodies has been discussed with emphasis on the potential for phytoremediation of urea using common water weed viz. E. densa.  相似文献   

6.
Present work demonstrates Cr (VI) detoxification and resistance mechanism of a newly isolated strain (B9) of Acinetobacter sp. Bioremediation potential of the strain B9 is shown by simultaneous removal of major heavy metals including chromium from heavy-metals-rich metal finishing industrial wastewater. Strain B9 tolerate up to 350 mg L?1 of Cr (VI) and also shows level of tolerance to Ni (II), Zn (II), Pb (II), and Cd (II). The strain was capable of reducing 67 % of initial 7.0 mg L?1 of Cr (VI) within 24 h of incubation, while in presence of Cu ions 100 % removal of initial 7.0 and 10 mg L?1 of Cr (VI) was observed with in 24 h. pH in the range of 6.0–8.0 and inoculum size of 2 % (v/v) were determined to be optimum for dichromate reduction. Fourier transform infrared spectroscopy and transmission electron microscopy studies suggested absorption or intracellular accumulation and that might be one of the major mechanisms behind the chromium resistance by strain B9. Scanning electron microscopy showed morphological changes in the strain due to chromium stress. Relevance of the strain for treatment of heavy-metals-rich industrial wastewater resulted in 93.7, 55.4, and 68.94 % removal of initial 30 mg L?1 Cr (VI), 246 mg L?1 total Cr, and 51 mg L?1 Ni, respectively, after 144 h of treatment in a batch mode.  相似文献   

7.
To develop a bacterial bioaugmentation system for fluorine-containing industrial wastewater treatment, optimal conditions for 4-fluoroaniline (4-FA) degradation and autoinducer release in Acinetobacter sp. TW were determined. Quorum sensing in biofilms of strain TW was also investigated. Different optimal conditions exist for 4-FA degradation and autoinducer release, particularly with regard to pH. Quorum sensing modulates extracellular polymeric substance (EPS) secretion and biofilm formation in the strain but plays no role in 4-FA degradation. Under optimal conditions for 4-FA degradation, the release of N-3-oxo-hexanoyl-homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl-homoserine lactone (C6-HSL) in strain TW was significantly lower than required for quorum sensing. Under optimal conditions for autoinducer release, on the other hand, 3-oxo-C6-HSL and C6-HSL levels exceeded the quorum sensing thresholds, thereby inducing EPS secretion and biofilm formation. We conclude that the optimal conditions for autoinducer release (25 °C, pH 5, 800 mg L?1 4-FA, and 0 % NaCl) are suitable for bacterial colonization in bioaugmentation, while those for 4-FA degradation (25–30 °C, pH 8 and 800 mg L?1 4-FA) maximize the system performance after colonization.  相似文献   

8.
The aqueous photodegradation of fluopyram was investigated under UV light (λ?≥?200 nm) and simulated sunlight irradiation (λ?≥?290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 ?), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 ?, Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L?1 Fe (III) and 500 mg L?1 TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.  相似文献   

9.
Dissolved organic matter (DOM) in wastewater and reclaimed water is related to water quality, safety, and treatability. In this study, DOM was characterized through a fingerprint analysis method for DOM characterization using resin fractionation followed by size exclusion chromatography (SEC). Resin fractionation was used in the first step to divide the DOM in water samples into six resin fractions, namely, hydrophobic acids (HOA), hydrophobic bases (HOB), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB), and hydrophilic neutrals (HIN). SEC analysis was then performed to separate each resin fraction into several (n) subfractions with different molecular weights (MW). Thus, the total DOM in the water sample was fractionated into 6n subfractions. After quantification of each subfraction by dissolved organic carbon (DOC), a fingerprint graph was constructed to express the distribution of DOM in the subfractions. The fingerprint analysis method was applied to a secondary effluent sample during ozonation. Ozonation (dose of 10 mg L?1) removed the DOC only by 8 % and reduced UV254 of the sample by 36 %. Fingerprint graphs also revealed that the resin fractions changed quite limitedly but transformation of subfractions occurred notably.  相似文献   

10.
In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50–90 °C), catalyst load (10–50 mg L?1 Fe3+), initial IL concentration (100–2000 mg L?1), and hydrogen peroxide dose (10–200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe3+]0 = 50 mg L?1; [H2O2]0 = 100% of the stoichiometric amount), the complete removal of [C4mim]Cl (1000 mg L?1) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe3+ amount and H2O2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol?1. The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.  相似文献   

11.
The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L?1 COD and 30 mg L?1 BOD5) and inorganic pollutants (e.g., up to 0.5 mg L?1 Cu and 0.1 mg L?1 Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.  相似文献   

12.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

13.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

14.
The degradation of sulfamonomethoxine (SMM) in the aqueous environment by the combination of UV illumination and Oxone has been studied. Experimental results indicated that the UV illumination can effectively activate Oxone to produce sulfate-free radicals (SO4 ??). When 10 mmol L?1 Oxone was added, 96.78 % removal of SMM (5 mg L?1) was achieved within 90 min. Mineralization of SMM was investigated by measuring the total organic carbon, which decreased by 89.01 % after 90 min reaction. Six intermediate compounds generated during the SMM degradation were identified with the aid of liquid chromatography and mass spectroscopy, combined with proton nuclear magnetic resonance spectroscopy. A general reaction pathway for the degradation of SMM was proposed, where the presence of SO4 ?? remained crucial during the degradation process.  相似文献   

15.
Overgrowth of water chestnut (Trapa spp.) is a regional problem throughout Asia and North America because of waterway blockage and water fouling upon decomposition. In the present study, we investigated the potential of water chestnut to control cyanobacterial blooms, via a high content of phenolic compounds. In addition, we assessed the impact of biomass harvesting and crude extract application on nutrient balance. We showed that the floating parts of water chestnut contained high concentrations of total phenolics (89.2 mg g?1 dry weight) and exhibited strong antioxidant activity (1.31 mmol g?1 dry weight). Methanol-extracted phenolics inhibited growth of Microcystis aeruginosa; the half maximal effective concentration (EC50) of the extracted phenolics was 5.8 mg L?1, which was obtained from only 103 mg L?1 of dry biomass (the floating and submerged parts). However, the crude extracts also added important quantities of nitrogen, phosphorus, and potassium (1.49, 1.05, and 16.3 mg g?1, respectively; extracted dry biomass weight basis); therefore, in practice, nutrient removal before and/or after the extraction is essential. On the other hand, biomass harvesting enables recovery of nitrogen, phosphorus, and potassium from the water environment (23.1, 2.9, and 18.7 mg g?1, respectively; dry biomass weight basis). Our findings indicate that water chestnut contains high concentrations of phenolics and exhibits strong antioxidant activity. Utilization of these resources, including nutrients, will contribute to reclamation of the water environment, and also to disposal of wet biomass.  相似文献   

16.
Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L?1). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L?1 and after 27 h to 5 mg L?1 CuO NPs. As a result, 4-h treatment with 5 mg L?1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H2O2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L?1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen (1O2) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L?1. Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the “Threshold for Tolerance Model” with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H2O2 production.  相似文献   

17.
The sulfur–limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3 ?), and influent PO4 3? concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3 ?-N of 30 mg L?1 and PO4 3?-P of 15 mg L?1, the SLAD biofilter removed phosphorus of 45 % when the HRT was 6 h, in addition with TN removal of nearly 100 %. The optimal phosphorus removal in the SLAD biofilter was around 60 %. For the synthetic wastewater containing a PO4 3?-P concentration of 15 mg L?1, the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.  相似文献   

18.
A Fenton oxidation system employing zero-valent iron (whose source was swarf, a residue of metallurgical industries, in powder form) and hydrogen peroxide for the treatment of an aqueous solution with six pesticides was developed, and the effect of the iron metal content, pH, and hydrogen peroxide concentration was evaluated. The characterization of the aqueous solution resulted in: pH 5.6, 105 mg L?1 of dissolved organic carbon, and 44.6 NTU turbidity. In addition, the characterization of the swarf by FAAS and ICP-MS showed 98.43?±?7.40 % of zero-valent iron. The removal was strongly affected by the content of iron metal, pH, and hydrogen peroxide concentration. The best degradation conditions were 2.0 g swarf, pH 2.0, and 5 mmol L?1 H2O2. At the end of the treatment, the pesticide degradation ranged from 60 to 100 %, leading to 55 % mineralization. Besides, all hydrogen peroxide was consumed and the determination of total dissolved iron resulted in 2 mg L?1. Thus, the advantages of this system are rapid degradation (up to 20 min), high-degradation rates, simple handling, and low cost.
Figure
A Fenton oxidation system employing Fe0 (in which the source of Fe0 was swarf, a residue in powder form of metallurgical industries) and H2O2 for the degradation of synthetic wastewater comprising six pesticides was developed, and the effect of the amount of Fe0, pH, and H2O2 concentration was evaluated.  相似文献   

19.
The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L?1). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L?1 ZnO NPs significantly increased SOD and CAT activities (P?<?0.05) and significantly depressed photosynthetic pigments (P?<?0.05). However, plant growth was not significantly affected (P?>?0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L?1 can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.  相似文献   

20.
There is global concern about the effects of decabromodiphenyl ether (BDE209) on environmental and public health. The molecular properties, biosorption, degradation, accumulation, and cellular metabolic effects of BDE209 were investigated in this study to identify the mechanisms involved in the aerobic biodegradation of BDE209. BDE209 is initially absorbed by wall teichoic acid and N-acetylglucosamine side chains in peptidoglycan, and then, BDE209 is transported and debrominated through three pathways, giving tri-, hepta-, octa-, and nona-bromodiphenyl ethers. The C–C bond energies decrease as the number of bromine atoms on the diphenyl decreases. Polybrominated diphenyl ethers (PBDEs) inhibit protein expression or accelerate protein degradation and increase membrane permeability and the release of Cl?, Na+, NH4 +, arabinose, proteins, acetic acid, and oxalic acid. However, PBDEs increase the amounts of K+, Mg2+, PO4 3?, SO4 2?, and NO3 ? assimilated. The biosorption, degradation, accumulation, and removal efficiencies when Brevibacillus brevis (1 g L?1) was exposed to BDE209 (0.5 mg L?1) for 7 days were 7.4, 69.5, 16.3, and 94.6 %, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号