首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerosol samples were collected from Northwest China desert region (Minqin), coastal suburb (Qingdao) and interior of the Yellow Sea (Qianliyan) in spring and summer of 1995 and 1996. Samples were analysed for major components, carbon and sulphur. The results show that concentrations of aerosols change considerably in time and space. The crustal materials carried by cold front system increase notably the aerosol concentration (mass/unit vol.) over the Yellow Sea but reduce the percentage contribution of pollutants and sea-salt. The sea-salt and regional aerosols become dominant fractions in coastal atmosphere in summer when the dust storms are expired in source region and the Southeast monsoon starts in the Pacific Ocean.  相似文献   

2.
Road dust contributes a large percentage of the atmosphere's suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles > 100 microm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles < 37 microm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1-10 microm. Ultrafine particles (< 1 microm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (< 10 microm) from the downtown and freeway tunnel areas were principally 2.5-10 microm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (< 1 microm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

3.
Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local pollution period, indicating that, in addition to crustal material, the AD dust storms also had a significant influence on anthropogenic elements.  相似文献   

4.
Abstract

Road dust contributes a large percentage of the atmosphere’s suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles >100 μm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles <37 μm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1–10 μm. Ultrafine particles (<1 μm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (<10 μm) from the downtown and freeway tunnel areas were principally 2.5–10 μm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (<1 μm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

5.
Cheng MT  Lin YC  Chio CP  Wang CF  Kuo CY 《Chemosphere》2005,61(10):1439-1450
Aerosol samples for PM(2.5) and PM(2.5-10) were collected at four locations in central Taiwan from 26 to 31 March 2000, a period that experienced exceedingly high PM levels from 29 to 30 March due to the passage of an Asian dust storm. The samples were analyzed for mass, metallic elements, ions, and carbon. The purpose of this paper is to investigate the influence of the dust storm on the characteristics of local ambient particulate matter. The results indicate that the concentrations of the crustal elements Ca, Mg, Al, Fe and the sea salt species Na+ and Cl- in PM(2.5-10) during the dust episode exceed the mean concentrations in the non-dust period by factors of 3.1, 2.9, 2.6, 2.2, 2.3 and 2.1 respectively. Enrichment factors of Ca, Fe, and Mg in PM(2.5-10) during the dust event are close to unity, indicating that these elements are from soil. Reconstruction of aerosol compositions revealed that soil of coarse particulates elevated approximately 50% in the dust event. It is noted that during the dust event, the ratio of Mg/Al in PM(2.5-10) ranged from 0.21 to 0.25 while that of Ca/Al ranged from 0.6 to 0.9, levels more constant than those obtained in non-dust period.  相似文献   

6.
To investigate the characteristics of Asian dust storm particles as single particles in Japan, we measured morphology, composition and concentration of single particles using Scanning Electron Microscope (SEM) coupled with an energy dispersive X-ray microanalyzer (EDX), particle induced X-ray emission (PIXE) and micro-PIXE. Particles were sampled in Kyoto, Japan from the middle of April to the end of July 1999. Mass concentration in Asian dust–storm events was roughly 3–5 times higher than that of the highest concentration measured in non-Asian dust storm seasons. Single particles were generally sharp-edged and irregular in shape and contained mostly crustal elements such as Si, Fe, Ca and Al. Particles which have more than 40% Si content comprised nearly 50% of coarse single particles in Asian dust storm events. Main concentration range of Al in single Asian dust storm particles was 10–20%, and those of Ca and Fe were below 10%. Even though S and Cl in soils of the desert and loess areas in northwest of China were not detected, significant concentration of S and Cl in coarse fraction in Asian dust storm event were detected in single particles. Especially, the maximum concentration of S in Asian dust storm event was about 5 times higher than that in non-Asian dust storm days. Every single particle in coarse fraction existed as the mixing state of soil components and S. Good agreement between the results of SEM–EDX analysis and that of micro-PIXE analysis was obtained in this study.  相似文献   

7.
Yatkin S  Bayram A 《Chemosphere》2008,71(4):685-696
Samples of PM10 and PM2.5 were collected from several natural and anthropogenic sources using in-stack cyclone, grab sampling/resuspension chamber and ambient air samplers. The chemical characterization of the samples was achieved containing Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V and Zn using an inductively coupled plasma-optical emission spectrometer (ICP-OES). The elemental fractions (weight percent by mass), standard deviations and uncertainties were reported. The elemental compositions of PM emitted from mineral industries and cement kiln were dominated by terrestrial elements, particularly Ca, whereas the profile of top-soil mainly contained Al and Ca. The profiles of industrial sources were generally typical for related ones; however, significant differences were obtained for some of them. Similarly, the profiles of fuel burning emissions have significant differences compared to profiles obtained all around the world.  相似文献   

8.
Depletion of Si in transported dust has been recognized for many years. It can be used to distinguish between transported and local dust in cities, although it rarely has been. Here we use the variations of the Si/Al ratio in 15 months of continuous PM2.5 samples at Beijing (northern China) and Chongqing (southwestern China) to reveal the seasonal patterns of their dust sources. For both cities, peaks of concentration for Si and Al in PM2.5 corresponded with minima of Si/Al, and could often be linked to pulsed air flow from deserts to the northwest. With significant depletion (up to 80%) and homogeneous distribution at urban and rural sites, Si/Al showed a clear seasonal evolution, which decreased from spring to summer, increased from fall to winter, and collapsed during Chinese Spring Festival, indicating the dominance of transported dust, local fugitive dust and firework influence, respectively. The low ratios implied that desert dust is a common source during spring at Chongqing, whereas its presence during cold season at Beijing was also more frequent than expected. Failing to recognize the depletion of Si may lead to an overestimate of desert dust by 15%–65% when using the average abundance of Al in crust (6%–8%), as in previous studies. The difference in Si/Al ratio between local and transported dust implies that >60% of the dust at Beijing came from outside the city during the springs of 2004–2006. This result can help resolve the contradictory findings on this topic that have been presented earlier.  相似文献   

9.
Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust episode”). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were “activated” as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which “desert” is designated to be the only land-cover category that can emit wind-blown dust.  相似文献   

10.
For a two-year period, the chemistry of daily precipitation samples for a site in southern Indiana was analyzed for effect of seasons and synoptic storm types. The storms were classified as frontal, cyclonic, convective and other. Statistically significant (5 percent level) higher concentrations of sulfate, ammonium and hydrogen ion and lower sodium occurred in the warm seasons (April-September) than in the cold (October-March); nitrate, chloride and calcium concentrations were similar in both seasons. In general, convective and frontal storms contained the highest concentrations of ions, and cyclonic and other the lowest. Frontal storms showed significant higher sulfate, nitrate, ammonium and hydrogen ion and lower sodium in warm seasons than in cold, while cyclonic storms yielded significant (1 percent level) higher nitrate in the cold seasons. These results are generally consistent with the well-known behavior of the meteorological weather system categories.  相似文献   

11.
Rain water samples were collected during the monsoon of 1994, using automatic wet-only and manual bulk collectors at a height of 30 m above the ground at the National Physical Laboratory, New Delhi. The average pH of the rain water was 5.7 and its chemical composition was dominated by NH4 and SO4. The free acidity of the rain water was found to be due to S04 rather than N03 and it was mainly neutralized by NH4 and Ca. Calculation of sea salt fraction and enrichment factor revealed that this site is free for marine influence. On an average the bulk samples had 13% higher concentration than that of wet-only samples which may be due to the deposition of soil-derived particles during the 24 h period of exposure. The higher neutralization factors of Ca and Mg in bulk samples and highest dry deposition rates for Ca in comparison to other components, indicated the positive interference of dust particles in neutralization.  相似文献   

12.
Concentrations and chemical composition of the coarse particle fraction (PMc) were investigated at two urban sites in the city of Thessaloniki, Greece, through concurrent sampling of PM10 and PM2.5 during the warm and the cold months of the year. PMc levels at the urban-traffic site (UT) were among the highest found in literature worldwide exhibiting higher values in the cold period. PMc levels at the urban-background site (UB) were significantly lower exhibiting a reverse seasonal trend. Concentration levels of minerals and most trace metals were also higher at the UT site suggesting a stronger impact from traffic-related sources (road dust resuspension, brake and tire abrasion, road wear). According to the chemical mass closure obtained, minerals (oxides of Si, Al, Ca, Mg, Fe, Ti, and K) dominated the PMc profile, regardless of the site and the period, with organic matter and secondary inorganic aerosols (mainly nitrate) also contributing considerably to the PMc mass, particularly in the warm period. The influence of wind speed to dilution and/or resuspension of coarse particles was investigated. The source of origin of coarse particles was also investigated using surface wind data and atmospheric back-trajectory modeling. Finally, the contribution of resuspension to PMc levels was estimated for air quality management perspectives.  相似文献   

13.
Deokjeok Island is located off the west coast of the Korean Peninsula and is a suitable place to monitor the long-range transport of air pollutants from the Asian continent. In addition to pollutants, Asian dust particles are also transported to the island during long-range transport events. Episodic transport of dust and secondary particles was observed during intensive measurements in the spring (March 31-April 11) and fall (October 13-26) of 2009. In this study, the chemical characteristics of long-range-transported particles were investigated based on highly time-resolved ionic measurements with a particle-into-liquid system coupled with an online ion chromatograph (PILS-IC) that simultaneously measures concentrations of cations (Li+, Na , NH4+, K+, Ca2+, Mg2+) and anions (F-, C1-, NO3-, SO42-). The aerosol optical thickness (AOT) distribution retrieved by the modified Bremen Aerosol Retrieval (M-BAER) algorithm from moderate resolution imaging spectroradiometer (MODIS) satellite data confirmed the presence of a thick aerosol plume coming from the Asian continent towards the Korean peninsula. Seven distinctive events involving the long-range transport (LRT) of aerosols were identified and studied, the chemical components of which were strongly related to sector sources. Enrichment of acidic secondary aerosols on mineral dust particles, and even of sea-salt components, during transport was observed in this study. Backward trajectory, chemical analyses, and satellite aerosol retrievals identified two distinct events: a distinctively high [Ca2++Mg2]/[Na+] ratio (>2.0), which was indicative of a preprocessed mineral dust transport event, and a low [Ca2++Mg2+]/[Na+] ratio (<2.0), which was indicative of severe aging of sea-salt components on the processed dust particles. Particulate C1- was depleted by up to 85% in spring and 50% in the fall. A consistent fraction of carbonate replacement (FCR) averaged 0.53 in spring and 0.55 in the fall. Supporting evidences of C1- enrichment on the marine boundary layer prior to a dust front were also found. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for sector and air mass classifications of clean and LRT cases.  相似文献   

14.
To study the mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006, both TSP and PM2.5 samples were collected at three sites of northern China in addition to the dry deposition samples collected in an episode in Beijing. 23 elements, 15 ions, and 16 PAHs in each sample were analyzed. The two dust storms in northern China were observed in April 8–10 (DS1) and April 16–18 (DS2). Compared to DS2, DS1 was weaker and more polluted with stronger mixing between crustal and pollutant aerosols during their long-range transport. The concentrations of pollution species, e.g. pollution elements, ions, and PAHs were higher in DS1 than that in DS2, while the crustal species showed adverse variation. The correlation between chemical species and Al and between PAH(4) and PAH(5,6) further confirmed the stronger chemical transformation and aerosol mixing in DS1 than that in DS2. Back trajectory and chemical analysis revealed that in DS1 the air masses at Beijing were mostly from southern or southwestern direction at lower altitude with much more pollution, while in DS2 the air masses were mostly from the northwestern and northern direction with dust mainly, which explained why there was a stronger mixing of dust with pollution aerosol in DS1 than that in DS2 over Beijing.  相似文献   

15.
Over a twelve year period from 1996 to 2007, 76 dust storm related events (as days) in Hong Kong were selected for study, based on Aluminium and Calcium concentrations in PM10. Four of the 76 events reach episodic levels with exceedances of the Hong Kong air quality standards. The purpose of the study is to identify and characterize dust sources impacting Hong Kong.Global distribution of aerosols in NASA’s daily aerosol index images from TOMS and OMI, are compared to plots generated by NRL(US)’s Navy Aerosol Analysis and Prediction System. Possible source areas are assigned by computing air parcel backward trajectories to Hong Kong using the NOAA HYSPLIT model. PM10 and elemental data are analyzed for crustal mass concentrations and element mass ratios.Our analysis reveals that 73 out of the 76 dust events (96%) involve non-East Asian sources-the Thar, Central/West Asian, Arabian and Sahara deserts (Saharan influence is found in 63 events), which are previously not known to affect Hong Kong. The Gobi desert is the most frequent origin of dust, affecting 68 dust events while the Taklamakan desert impacts only 30 of the dust events. The impact of the Gobi desert in March and December is apparently associated with the northeast monsoon in East Asia.Our results also show a seasonal pattern in dust impact from both East Asian and more remote sources, with a maximum in March. Dust event occurrences are conspicuously absent from summer. Dust transport to Hong Kong is commonly associated with the passage of frontal low-pressure systems.The coarse size fraction of PM10 concentrations were, as indicated by Al, Ca and Fe concentrations, about 4–8 times higher during dust events. The mean Ca/Al ratios of sources involving the Taklamakan desert are notably higher than those for non-East Asian sources owing to a higher Ca content of most of the East Asian deserts. The Fe/Al ratios follow a similar trend.Contributions from the desert sources are grossly estimated where possible, by using the average Al abundance of 8% in the upper continental crust to convert the Al mass in the PM10 to dust concentrations. This is done for the six events identified with air mass purely of non-East Asian origin and the two events related only to the Thar/Arabian/Sahara deserts. Results reveal that the average contribution from the non-East Asian sources (including C/W Asia) is approximately 10% and, that from the Thar/Arabian/Sahara deserts is about 8%.  相似文献   

16.
The Chinese Loess Plateau (CLP) receives and potentially contributes to Asian dust storms that affect particulate matter (PM) concentrations, visibility, and climate. Loess on the CLP has experienced little weathering effect and is regarded as an ideal record to represent geochemical characteristics of Asian paleo dust. Samples were taken from 2-, 9-, and 15-m depths (representing deposition periods from approximately 12,000 to approximately 200,000 yr ago) in the Xi Feng loess profile on the CLP. The samples were resuspended and then sampled through total suspended particulates (TSP), PM10, PM2.5, and PM1 (PM with aerodynamic diameters < approximately 30, 10, 2.5, and 1 microm, respectively) inlets onto filters for mass, elemental, ionic, and carbon analyses using a Desert Research Institute resuspension chamber. The elements Si, Ca, Al, Fe, K, Mg, water-soluble Ca (Ca2+), organic carbon, and carbonate carbon are the major constituents (> 1%) in loess among the four PM fractions (i.e., TSP, PM10, PM2.5, and PM1). Much of Ca is water soluble and corresponds with measures of carbonate, indicating that most of the calcium is in the form of calcium carbonate rather than other calcium minerals. Most of the K is insoluble, indicating that loess can be separated from biomass burning contributions when K+ is measured. The loess has elemental abundances similar to those of the upper continental crust (UCC) for Mg, Fe, Ti, Mn, V, Cr, and Ni, but substantially different ratios for other elements such as Ca, Co, Cu, As, and Pb. These suggest that the use of UCC as a reference to represent pure or paleo Asian dust needs to be further evaluated. The aerosol samples from the source regions have similar ratios to loess for crustal elements, but substantially different ratios for species from anthropogenic sources (e.g., K, P, V, Cr, Cu, Zn, Ni, and Pb), indicating that the aerosol samples from the geological-source-dominated environment are not a "pure" soil product as compared with loess.  相似文献   

17.
Environmental pollutants such as microplastics have become a major concern over the last few decades. We investigated the presence, characteristics, and potential health risks of microplastic dust ingestion. The plastic load of 88 to 605 microplastics per 30 g dry dust with a dominance of black and yellow granule microplastics ranging in size from 250 to 500 μm was determined in 10 street dust samples using a binocular microscope. Fluorescence microscopy was found to be ineffective for detecting and counting plastic debris. Scanning electron microscopy, however, was useful for accurate detection of microplastic particles of different sizes, colors, and shapes (e.g., fiber, spherule, hexagonal, irregular polyhedron). Trace amounts of Al, Na, Ca, Mg, and Si, detected using energy dispersive X-ray spectroscopy, revealed additives of plastic polymers or adsorbed debris on microplastic surfaces. As a first step to estimate the adverse health effects of microplastics in street dust, the frequency of microplastic ingestion per day/year via ingestion of street dust was calculated. Considering exposure during outdoor activities and workspaces with high abundant microplastics as acute exposure, a mean of 3223 and 1063 microplastic particles per year is ingested by children and adults, respectively. Consequently, street dust is a potentially important source of microplastic contamination in the urban environment and control measures are required.  相似文献   

18.
Samples from two strong homogeneous dust plumes from the Saharan desert reaching Izaña (Tenerife, Spain) in July and August 2005 were taken with a miniature impactor system and filter samplers. Size, aspect ratio and chemical composition of more than 22,000 individual particles were studied by scanning electron microscopy. The mineralogical phase composition of about 200 particles was investigated by transmission electron microscopy. In addition, the aerosol size distribution was measured with an optical particle spectrometer. In all samples, the aerosol was dominated by mineral dust with an average composition (by volume) of 64% silicates, 6% quartz, 5% calcium-rich particles, 14% sulfates, 1% hematite, 1% soot and 9% other carbonaceous material. Sulfate was found predominantly as coating on other particles with an average thickness of approximately 60 nm. The aerosol calcium content is correlated with the calcite concentrations of soils in the source region, highest values were observed for northern and central Algeria and Morocco. The average aspect ratio of the particles was 1.64. The distributions of the aspect ratios are parameterized by log-normal functions for modeling purpose. Single-scattering albedo (0.95) and asymmetry factor (0.74–0.81) was measured by polar aerosol photometry on filter samples using a light source resembling the solar spectrum. The apparent soot content of the sample (1 vol%) was determined by the same technique. From the mineralogical data, an average complex refractive index of 1.59–9×10−3i for visible light was derived. The imaginary part of the complex refractive index decreases with increasing particle size from −2.5×10−2i to <−10−3i, reflecting the decreasing hematite and soot contents. The imaginary part derived from optical measurements was −7×10−3i.  相似文献   

19.
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.  相似文献   

20.
Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit.
ImplicationsThis paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Union annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the high particle levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号