首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bulk atmospheric deposition measurements for selected persistent toxic substances (PTS) were performed along environment gradients (urban–suburban–rural–background sites) in Brazil. The aim with this work is to investigate the fate of PTS and their emissions in South America, particularly along environment transects. Bulk sampler systems (polyurethane foams, 1?×?1 m2) were fixed along environment gradients (urban–suburban–rural–background) over summer and winter periods (2005–2007) at sites of different climate zones of Brazil. Organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) were analyzed by gas chromatography coupled to electron capture detector (Shimadzu 2010, 20i GC-ECD). Urban sites reported the highest deposition rates for all PTS, ranging from tens to thousands of pictograms per square meter per day. Basically, there were no obvious seasonal differences in deposition rate concentrations for PTS along the urban–suburban–rural–background gradient. Dichlorodiphenyltrichloroethane (DDT) and its metabolites were the OCs most frequently detected at relatively high deposition rate levels (>1,000 pg m?2 day?1). Other legacy and current-use pesticides such as hexachlorocyclohexanes, endosulfans, hexachlorcyclobenzine, dieldrin, aldrin, metoxichlor, and chlodanes were also detected at lower deposition rate levels (10–100 pg m?2 day?1). PCBs were detected at extremely high deposition rate levels (1,000–10,000 pg m?2 day?1) with highest contributions from the tetra-PCBs (PCB-52, PCB-44, PCB-66, PCB-81, and PCB-77) and penta-PCB congeners (PCB-101, PCB-105, PCB-114, PCB-118, and PCB-126). The greatest deposition rate concentrations for total PCBs were mainly detected at urban sites in connection with high population densities. The observed high deposition rate concentrations for PCBs and DDTs at urban sites are probably associated with old PTS stocks emissions. For PCBs in particular, the high levels are strongly associated with local population densities, highlighting the effect of local/regional urban sources on these target PTS. These results are important to show that even though the use of PTS is regulated, the deposition of selected PTS is still impacted by local and regional emissions in Brazil and may be related to the historical and continued emissions from old PTS stocks.  相似文献   

2.
The polyurethane foam (PUF) disk-based passive air samplers (PAS), mounted inside two aluminium bowls to buffer the air flow to the disk and to shield it from precipitation and sunlight, were used for the collection of atmospheric SVOCs in Singapore during April 2008–June 2008. Data obtained from PAS measurements are compared to those from active high-volume air sampling (AAS). Single factor ANOVA tests show that there were no significant differences in chemical distribution profiles between actively and passively collected samples (PAHs, F = 3.38 × 10?8 < Fcritical = 4.17 with p > 0.05; OCPs, F = 2.71 × 10?8 < Fcritical = 4.75 with p > 0.05). The average air-side mass transfer coefficient (kA) for PAS, determined from the loss of depuration compounds such as 13C6 – HCB (1000 ng), 13C12 – 4,4′ DDT (1000 ng) and 13C12 – PCB 101 (1000 ng)spiked on the disks prior to deployment, was 0.12 ± 0.04 m s?1. These values are comparable to those reported previously in the literature. The average sampling rate was 3.78 ± 1.83 m3 d?1 for the 365 cm2 PUF disk. Throughout the entire sampling period (~68 d), most of the PAHs and all OCPs exhibited a linear uptake trend on PAS, while naphthalene, acenaphthylene, acenaphthene and fluorene reached the curvilinear phase after the first ~30 d exposure. Theoretically estimated times to equilibrium (teq) ranged from around one month for Acy to hundreds of years for DB(ah)A. Sampling rates, based on the time integrated active sampling-derived concentrations and masses collected by PUF disks during the linear uptake phase, were determined for all target compounds with the average values of 2.50 m3 d?1 and 3.43 m3 d?1 for PAHs and OCPs, respectively. More variations were observed as compared to those from the depuration study. These variation were most likely due to the difference of physicochemical properties of individual species. Lastly, multiple linear regression models were developed to estimate the log-transformed gaseous concentration of an individual compound in air based on the mass collection rate of the gaseous SVOCs measured using the PAS and the molecular weight (MW) of the particular compound for both PAHs and OCPs, respectively.  相似文献   

3.
Organic films, collected from indoor and outdoor window surfaces in Guangzhou and Hong Kong of South China, were analyzed to quantify their organic carbon (OC), elemental carbon (EC), and polybrominated diphenyl ethers (PBDEs) content. The highest concentrations of OC, EC, and BDE-209 were found in Guangzhou with values of 10 000 μg m?2, 2200 μg m?2, and 4000 ng m?2, respectively, and the highest concentration of Σ7PBDE (sum of BDE-28, -47, -99, -100, -153, -154 and -183) was found in Hong Kong with a value of 25 ng m?2. In most cases, the concentrations of PBDEs were higher in the exterior films than those in the interior films with BDE-209 as the predominant congener in both cities, suggesting that PBDEs mainly come from ambient environment, and deca-BDE accounts for major PBDE consumption. The growth rates of organic film on window surfaces were fast at the beginning, and reached a consistent level afterwards. The evolution rates ranged from 2.6 to 11 nm day?1 for “bulk film”, while from 0.06 to 0.92 nm day?1 for “pure film”. The concentrations of PBDEs on the window surfaces did not increase with the growth time, suggesting that the window surface may provide a good place for photo-degradation of PBDEs.  相似文献   

4.
Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m3 day−1 and 2.2-6.8 m3 day−1 respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates.  相似文献   

5.
We examined PAH uptake by Norway spruce needles following the emergence of new buds in spring 2004–June 2005. Atmospheric PAH concentrations (gaseous phase and particle-bound) were monitored during this period, and PAH concentrations from these three environmental media were then used to calculate deposition and transfer velocities. Benzo(a)pyrene was found almost exclusively associated to particles and thus was used to determine a particle-bound deposition velocity of 10.8 m h?1. PAHs present in both compartments had net gaseous transfer velocities ranging from negligible values to 75.6 m h?1 and correlated significantly with log KOA. The loss velocities thereafter calculated were found to be higher for more volatile PAHs. Using the calculated average atmospheric PAH concentrations and deposition velocities, it was thus possible to model PAH uptake by vegetation through time. We demonstrate that this approach can be used to determine deposition velocities without the use of a surrogate surface. In considering both particulate-bound and gaseous deposition processes this model can be used not only to study air–foliage exchange of semi-volatile organic compounds, but also to illustrate the relative contribution of gaseous deposition and particulate-bound deposition in the overall atmospheric vegetation uptake of semi-volatile organic compounds.  相似文献   

6.

From simultaneous air and water polychlorinated biphenyl (PCB) measurements collected in September 2010, we re-evaluated the direction and magnitude of net air-water exchange of PCBs in southwest Lake Michigan and compared them with estimations made using similar approaches 15 years prior. Air and water samples were collected during a research expedition on Lake Michigan at 5 km off the coast of Chicago, with prevailing winds from the southwest of our location. Gas-phase ΣPCB concentrations ranged from 190 to 1100 pg m?3 with a median of 770 pg m?3, which is similar to the concentrations measured in the City of Chicago at the same time and similar to concentrations measured in this part of the lake over the last 20 years. Water dissolved-phase ΣPCB concentrations ranged from 150 to 170 pg L?1 with a median of 160 pg L?1, which is one-tenth of that measured in the 1990s. ?PCB net fluxes showed a slightly absorptive behavior, with a median of (?) 21 ng m?2 day?1 and an interquartile range of (?) 47 to (+) 5 ng m?2 day?1, where (?) and (+) fluxes indicate absorption and volatilization, respectively. Airborne PCB concentrations were higher when the winds were coming from Chicago and drive the deposition. Our fluxes are not significantly different from estimations from 1994 and 1995 and suggest that absorption of PCBs into the waters is slightly more prevalent than 15 years ago. It was confirmed that Chicago remains an important atmospheric source of PCBs to Lake Michigan.

  相似文献   

7.
PBDEs were measured in air and soil across Azerbaijan to establish contemporary concentrations at 13 urban and rural sites. Polyurethane foam passive air samplers (PUF-PAS) were deployed for a period of a month with surface soil samples collected at the same sites. Unlike organochlorine pesticides previously surveyed by our group, PBDE concentrations in both contemporary air and soil were low in comparison to recent European and Asian studies. For example, mean ∑9PBDE concentrations in air and soil were 7.13 ± 1.66 pg m?3 and 168 ± 57 pg g?1, respectively. The fully brominated BDE-209 was the most abundant congener observed in soil (174.8 ± 58.5 pg g?1), comprising ~ 96% of ∑10PBDE. However, the PAS-derived air concentrations for highly brominated congeners must be viewed with caution as there is uncertainty over the uptake rates of particle-bound chemicals using these devices. Some of the highest concentrations in air were observed at sites with the highest wind speeds and at several remote locations in the north of the country and this requires further research. Levels of BDE-47 and 99 (the two most abundant congeners in the widely used penta-formulation) were lower than levels reported elsewhere suggesting limited use/import of the penta-BDE formulation in Azerbaijan.  相似文献   

8.
Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were collected at a tropical site in Southeast Asia over 12-h periods during November and December 2006 to determine their gas/particle distributions by analyzing integrated quartz filter and polyurethane foam samples. Gas/particle partitioning coefficients, Kp, were calculated, and their relationship with the subcooled liquid vapor pressure pLo for both PAHs and PCBs was investigated. The regressions of log Kp vs. log pLo for most of samples gave high correlations for both PAHs and PCBs and the slopes were statistically shallower than ?1, but they were relatively steeper than those obtained in temperate zones of the Northern Hemisphere. By comparison, the particle-bound fraction of low molecular weight (LMW) PAHs was underestimated by both Junge-Pankow adsorption and KOA (octanol–air partition coefficient) absorption models, while the predicted values agree relatively better with those observed ones for high molecular weight (HMW) PAHs. In addition, the adsorption onto the soot phase (elemental carbon) predicted accurately the gas/particle partitioning of PAHs, especially for LMW compounds. On the other hand, the KOA absorption model using the measured organic matter fraction (fOM) value fitted the PCB data much better than the adsorption model did, indicating the sorption of nonpolar compounds to aerosols might be dominated by absorption into organic matters in this area.  相似文献   

9.
Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic perfluorinated compounds were determined in air samples collected at two sites in the vicinity of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido ethanols (FASE) in the gas- and particle-phase as well as a set of perfluorinated carboxylates (PFCA) and sulfonates (PFSA) in the particle-phase. This study presents the distribution of PFC in ambient air of the German North Sea and in the vicinity of Hamburg for the first time. Average total PFC concentrations in and around Hamburg (180 pg m?3) were higher than those observed in the German Bight (80 pg m?3). In the German Bight, minimum–maximum gas-phase concentrations of 17–82 pg m?3 for ΣFTOH, 2.6–10 pg m?3 for ΣFTA, 10–15 pg m?3 for ΣFASA, and 2–4.4 pg m?3 for ΣFASE were determined. In the vicinity of Hamburg, minimum–maximum gas-phase concentrations of 32–204 pg m?3 for ΣFTOH, 3–26 pg m?3 for ΣFTA, 3–18 pg m?3 for ΣFASA, and 2–15 pg m?3 for ΣFASE were detected. Concentrations of perfluorinated acids were in the range of 1–11 pg m?3. FTOH clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and thus medium to long range atmospheric transport was the governing parameter for the amount of PFC in ambient air. Southwesterly located source regions seemed to be responsible for elevated PFC concentrations, local sources appeared to be of minor importance.  相似文献   

10.
Human serum samples (n?=?113) from Bizerte, northern Tunisia, collected between 2011 and 2012 were analyzed for 8 organochlorine pesticides (OCPs) including p,p′-dichlorodiphenyltrichloroethane (DDT) and its metabolites, hexachlorobenzene (HCB), hexachlorocyclohexane isomers, dieldrin, and heptachlor and 12 polychlorinated biphenyls (PCBs) congeners. Concentrations of these residues in serum were determined by gas chromatography with electron capture detector and total cholesterol (CHOL) and triglycerides (TG) levels were evaluated by enzymatic colorimetric method. HCB, p,p′-DDE, PCB-138, PCB-153, and PCB-180, were the most abundant organochlorine compounds (OCs) detected in >95 % of the study subjects. The mean levels of p,p′-DDE and HCB in serum were 168.8 and 49.1 ng?g?1 lipid, respectively. The sum PCBs concentrations ranged from 37.5 to 284.6 ng?g?1 lipid in the samples, with mean and median value of 136.1 and 123.2 ng?g?1 lipid, respectively. The PCB profile consisted of persistent congeners, such as PCB-138, PCB-153, and PCB-180 which contributed for approximately 82.7 % to the ∑PCBs. Statistical analysis showed that most OCs correlated significantly with age, considering all samples together or with gender differentiation. The present study shows that the levels of p,p′-DDE and ∑DDTs were significantly higher in females than in males (p?<?0.05), while PCBs levels were significantly higher in male (p?<?0.05) than in females. No statistically significant association was found between body mass index and concentration of any organochlorine pesticide or PCB congeners 153, 138, 180, or ∑PCBs.  相似文献   

11.
Atmospheric PBDEs were measured on a monthly basis in 2002–2004 at Point Petre, a rural site in the Great Lakes. Average air concentrations were 7.0 ± 13 pg m?3 for Σ14BDE (excluding BDE-209), and 1.8 ± 1.5 pg m?3 for BDE-209. Concentrations of 3 dominant congeners (i.e., BDE-47, 99, and 209) were comparable to previous measurements at remote/rural sites around the Great Lakes, but much lower than those at urban areas. Weak temperature dependence and strong linear correlations between relatively volatile congeners suggest importance of advective inputs of gaseous species. The significant correlation between BDE-209 and 183 implies their transport inputs associated with particles. Particle-bound percentages were found greater for highly brominated congeners than less brominated ones. These percentages increase with decreasing ambient temperatures. The observed gas/particle partitioning is consistent with laboratory measurements and fits well to the Junge–Pankow model. Using air mass back-trajectories, atmospheric transport to Point Petre was estimated as 76% for BDE-47, 67% for BDE-99, and 70% for BDE-209 from west–northwest and southwest directions. During the same time period, similar congener profiles and concentration levels were found at Alert in the Canadian High Arctic. Different inter-annual variations between Point Petre and Alert indicate that emissions from other regions than North America could also contribute PBDEs in the Arctic. In contrast to weak temperature effect at Point Petre, significant temperature dependence in the summertime implies volatilization emissions of PBDEs at Alert. Meanwhile, episodic observations in the wintertime were likely associated with enhanced inputs through long-range transport during the Arctic Haze period.  相似文献   

12.
This paper characterizes the emission rates of size fractionated particulate matter, inorganic aerosols, acid gases, ammonia and methane measured over four flocks at a commercial broiler chicken facility. Mean emission rates of each pollutant, along with sampling notes, were reported in this paper, the first in a series of two. Sampling notes were needed because inherent gaps in data may bias the mean emission rates.The mean emission rates of PM10 and PM2.5 were 5.0 and 0.78 g day?1 [Animal Unit, AU]?1, respectively, while inorganic aerosols mean emission rates ranged from 0.15 to 0.46 g day?1 AU?1 depending on the season. The average total acid gas emission rate was 0.43 g day?1 AU?1 with the greatest contribution from nitrous and nitric acids and little contribution from sulfuric acid (as SO2).Ammonia emissions were seasonally dependent, with a mean emission rate of 66.0 g day?1 AU?1 in the cooler seasons and 94.5 g day?1 AU?1 during the warmer seasons. Methane emissions were relatively consistent with a mean emission rate of 208 g day?1 AU?1.The diurnal pattern in each pollutant’s emission rate was relatively consistent after normalizing the hourly emissions according to each daily mean emission rate. Over the duration of a production cycle, all the measured pollutants’ emissions increased proportionally to the total live mass of birds in the house, with the exception of ammonia.Interrelationships between pollutants provide evidence of mutually dependent release mechanisms, which suggests that it may be possible to fill data gaps with minimal data requirements. In the second paper (Roumeliotis, T.S., Dixon, B.J., Van Heyst, B.J. Characterization of gaseous pollutants and particulate matter emission rates from a commercial broiler operation part II: correlated emission rates. Atmospheric Environment, 2010.), regression correlations are developed to estimate daily mean emission rates for data gaps and, using the normalized hourly diurnal patterns from this paper, emission factors were generated for each pollutant.  相似文献   

13.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

14.
Carbonaceous aerosol concentrations were determined for total suspended particle samples collected from Muztagh Ata Mountain in western China from December 2003 to February 2006. Elemental carbon (EC) varied from 0.004 to 0.174 μg m?3 (average = 0.055 μg m?3) while organic carbon (OC) ranged from 0.12 to 2.17 μg m?3 and carbonate carbon (CC) from below detection to 3.57 μg m?3. Overall, EC was the least abundant fraction of carbonaceous species, and the EC concentrations approached those in some remote polar areas, possibly representing a regional background. Low EC and OC concentrations occurred in winter and spring while high CC in spring and summer was presumably due to dust from the Taklimakan desert, China. OC/EC ratios averaged 10.0, and strong correlations between OC and EC in spring–winter suggest their cycles are coupled, but lower correlations in summer–autumn suggest influences from biogenic OC emissions and secondary OC formation. Trajectory analyses indicate that air transported from outside of China brings ~0.05 μg m?3 EC, ~0.42 μg m?3 OC, and ~0.10 μg m?3 CC to the site, with higher levels coming from inside China. The observed EC was within the range of loadings estimated from a glacial ice core, and implications of EC-induced warming for regional climate and glacial ice dynamics are discussed.  相似文献   

15.
Hogarh JN  Seike N  Kobara Y  Habib A  Nam JJ  Lee JS  Li Q  Liu X  Li J  Zhang G  Masunaga S 《Chemosphere》2012,86(7):718-726
A comprehensive congener specific evaluation of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in the atmosphere was conducted across East Asia in spring 2008, applying polyurethane foam (PUF) disk passive air sampler (PAS) as monitoring device. Mean concentrations derived for Japan, China and Korea were 184 ± 24, 1100 ± 118, and 156 ± 20 pg m−3 for ∑202 PCBs, and 9.5 ± 1.5, 61 ± 6, and 16 ± 2.4 pg m−3 for ∑63 PCNs, respectively. Relative to reported data from 2004, the present results suggest that air PCBs concentrations have not changed much in Japan and Korea, while it has increased by one order of magnitude in China. From principal component analysis, combustion emerged highly culpable in contemporary emissions of both PCBs and PCNs across the East Asian sub-region. Another factor derived as important to air PCBs was re-emissions/volatilization. Signals from PCBs formulations were also picked, but their general importance was virtually consigned to the re-emissions/volatilization tendencies. On the contrary, counterpart PCNs formulations did not appear to contribute much to air PCNs.  相似文献   

16.
Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.  相似文献   

17.
The first survey of persistent organic pollutant (POP) concentrations in air across several Indian agricultural regions was conducted in 2006-2007. Passive samplers comprising polyurethane foam (PUF) disks were deployed on a quarterly basis at seven stations in agricultural regions, one urban site and one background site. The project was conducted as a sub-project of the Global Atmospheric Passive Sampling (GAPS) Network. In addition to revealing new information on air concentrations of several organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), the study has demonstrated the feasibility of conducting regional-scale monitoring for POPs in India using PUF disk samplers. The following analytes were detected with relatively high concentrations in air (mean for 2006 and 2007, pg/m3): α- and γ-hexachlorocyclohexane (HCH) (292 and 812, respectively); endosulfan I and II (2770 and 902, respectively); p,p′-DDE and p,p′-DDT (247 and 931, respectively); and for the sum of 48 PCBs, 12,100 (including a site with extremely high air concentrations in 2007) and 972 (when excluding data for this site).  相似文献   

18.
Monsoon transport is an important process that influences the global transport of persistent organic pollutants. Only a few studies focused on the influence of monsoon on organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) levels in the Tibetan Plateau. In this study, 19 samples were collected in Lhasa, the capital of Tibet Autonomous Region, using a high-volume air sampler. The average concentrations of α-HCH, γ-HCH, p-p′-DDT, p-p′-DDE, o-p′-DDT, α-endosulfan, β-endosulfan and PCBs (including PCB-28, 101, and 118) were 2.3, 10.3, 3.2, 2.9, 5.8, 6.3, 2.2, and 10.6 pg m?3, respectively. The weak correlation coefficients between lnp (natural logarithm of partial pressure) and 1/T (reciprocal temperature) were obtained for DDTs and β-endosulfan (r2 values ranged from 0.13 to 0.41). However, no significant correlations were obtained for HCHs and PCBs. These results suggested that both local emission and long-range atmospheric transport (monsoon) may influence the distribution of OCPs at Lhasa. In this study, peak concentrations of DDTs, endosulfans and PCBs were found in August, when Eastern Monsoon system occurred. However, the maximum concentrations of HCHs appeared in June (Indian Monsoon is the dominant air circulation pattern). Monthly variation of OCP/PCB levels was likely associated with the different air sources of monsoon system.  相似文献   

19.
Li X  Li Y  Zhang Q  Wang P  Yang H  Jiang G  Wei F 《Chemosphere》2011,84(7):957-963
The concern about emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from steel industrial parks has increased in the past decades. In this study, polyurethane foam (PUF)-disk based passive air samples were collected in and around a big steel industrial park of Anshan, Northeast China from June 2008 to March 2009. The levels, seasonal variations and potential sources of PCDD/Fs, PCBs and PBDEs in the atmosphere around the steel industrial complex were investigated, and potential contribution of these three groups of persistent organic pollutants (POPs) from iron and steel production was also assessed. The air concentrations of ∑17PCDD/Fs (summer: 0.02-2.77 pg m−3; winter: 0.20-9.79 pg m−3), ∑19PCBs (summer: 23.5-155.8 pg m−3; winter: 14.6-81.3 pg m−3) and ∑13PBDEs (summer: 2.91-10.7 pg m−3; winter: 1.10-3.89 pg m−3) in this targeted industrial park were relatively low in comparison to other studies, which implied that the industrial activities of iron and steel had not resulted in serious contamination to the ambient air in this area. On the whole, the air concentrations of PCDD/Fs in winter were higher than those of summer, whereas the concentrations of PCBs and PBDEs showed opposite trends. The result from principal component analysis indicated that coal combustion might be the main contributor of PCDD/F sources in this area.  相似文献   

20.
Passive samplers with polyurethane disks (PUF) were applied in the determination of the concentration of polycyclic aromatic hydrocarbons (PAHs) in ambient air in six residential areas in the Philippines during four simultaneous sampling periods. The uptake profiles of PAHs were determined at one site during one sampling period. Most of the PAHs that were detected in air at concentrations that were significantly higher than their analytical detection limits exhibited a linear uptake trend on the PUF disk. The linear uptake profiles of some high molecular weight (HMW) PAHs were not established and this is attributed to the low concentration of the compounds in air in the gaseous phase. The retention concentrations of phenanthrene-d-10 were determined after depuration in four sampling sites during two sampling periods. The sampling rate for phenanthrene-d-10 was calculated at the linear phase of the uptake using the kA derived from depuration experiments and the relationship of kA and sampling rate which was established in a previous passive sampling study. The average sampling rate obtained for phenanthrene d-10 (2.94±0.69 m3 d−1) was applied for derivation of the concentrations of the PAHs in the field samples.The passive sampler with PUF disk and short integration time of 42–56 days is applicable for the derivation of the concentrations of PAHs in ambient air in the Philippines. The concentrations of the organic pollutants derived from the passive sampler showed variability for the six residential areas; reflecting the influence of possible sources of emission of the pollutants at the sites at the different sampling periods. The weather conditions, including the occurrence of a tropical cyclone, increased rainfall and high-relative humidity during the rainy season, had an influence on the concentrations of PAHs derived by the passive sampler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号