首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The optical properties (extinction-to-backscatter ratio, backscattering, depolarization, and backscatter-related Angstrom exponent) and height distribution of Asian dusts were measured using a two-wavelength Raman/depolarization lidar at Taipei, Taiwan, during the Asian dust seasons in 2004 and 2005. Dust layers were frequently observed in the free atmosphere (1–6 km). Dust optical thickness ranged from 0.01 to 0.55; backscatter-related Angstrom exponents ranged from 0.42 to 1.47; and lidar ratios (extinction-to-backscatter ratio) for 355 nm ranged from 32 to 72 sr (steradian). The mean values of dust particle depolarization and extinction coefficient are 14±6% and 0.16km-1, respectively, which are close to the moderate dust depolarizations and extinctions observed in free atmosphere in China and Japan. Backscatter-related Angstrom exponents were found correlated positively with lidar ratio and negatively with particle depolarization, indicating that the dust optical characteristics are predominated by size distribution. Dusts were found to tend to exhibit unusual low depolarization properties under moist conditions (relative humidity RH>70%), and the possible explanations are discussed.  相似文献   

2.
We have used lidar, sun-photometer, and the visibility measurements to investigate the optical properties of aerosols in the lower air. The observations were performed at Chung-Li (25°N, 121°E) during the period of February 2002–May 2004. Combined data indicate that 40–50% of total extinction in the column air contributed by aerosols in 1–5 km. Seasonally, spring time extinction is higher than other seasons. However, the summer extinction is the highest below about 2 km. Sources for aerosols are determined by using satellite imageries and back trajectories. Aerosols backscattering ratio and depolarization ratio are then categorized based on their sources. We found that the largest optical thickness is biomass burning aerosols originated in Southeast Asia. The aerosols generated from Northern China transported by the high-pressure system in spring are usually dust with depolarization ratios in the range of 0.1–0.3, but varying backscattering coefficients. The aerosols optical characteristics will be useful for future understanding about their environmental and climate effects.  相似文献   

3.
The special and temporal characteristics of aerosol optical depth (AOD) and Angstrom wavelength exponent (Alpha) and their relationship with aerosol chemical compositions were analyzed by using the data of CE318 sun-photometer and aerosol sampling instruments at Lin'an, Shangdianzi and Longfengshan regional atmospheric background stations. Having the highest AOD among the three stations, Lin'an shows two peaks in a year. The AOD at Shangdianzi station shows a single annual peak with an obvious seasonal variation. The AOD at Longfengshan station has obvious seasonal variation which peaks in spring. The Alpha analysis suggests that the aerosol sizes in Lin'an, Longfengshan and Shangdianzi change from fine to coarse categories. The relationship between the aerosol optical depths of the Lin'an and Longfengshan stations and their chemical compositions is not significant, which suggests that there is not a simple linear relationship between column aerosol optical depth and the near surface chemical compositions of atmospheric aerosols. The aerosol optical depth may be affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere.  相似文献   

4.
Using ground-based spectral solar extinction data taken over the Athens atmosphere, reduced (total minus Rayleigh) and aerosol (Angstrom) spectral optical depths of the atmosphere, have been retrieved, under different polluted conditions. The results suggest that the optical depth, on days with relatively low pollution, exhibits slight variation with wavelength denoting that aerosols deplete all wavelengths almost equally. In contrast, under dense pollution, small particles scattering and trace gases absorption, are the dominant processes, resulting in steeper optical depth’s slopes, mainly in the ultraviolet domain. The Angstrom’s parameters β and α were determined through a least-squares fitting method. The turbidity β coefficient always shows a temporal pattern with high values in the morning and afternoon and low values midday.  相似文献   

5.
The backscattering ratio, depolarization ratio and water-soluble ions of aerosols inside the boundary layer were measured by a depolarization lidar and an in situ ion chromatography (IC) in the spring of 2004 and 2005. To study the relationship between depolarization and aerosol compositions, depolarization ratios were compared with mixing ratio of soluble ions like calcium, potassium, and sodium from surface ground measurements. About 70% of the daily maximum depolarization ratios were distributed between 1.5% and 3.5% with a mean value of 2.14±0.83%. High correlation coefficients (R>0.8) were found between depolarization and ion calcium for all of the depolarization episodes (DP≈5–12%), which suggest the existence of mineral dust. As the tracer of biomass burning and sea salt, the mixing ratio of K+ and Na+ usually are greater than Ca2+ but did not show dependences with depolarization implying that biomass burning and sea salt aerosols may transport along with Asian dust but not exhibit significant non-spherical properties.  相似文献   

6.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

7.
Physical and optical properties of biomass burning aerosols in Northeastern region, India analyzed based on measurements made during February 2002. Large spatial extent of Northeastern Region moist tropical to moist sub-tropical forests in India have high frequency of burning in annual dry seasons. Characterization of resultant trace gases and aerosols from biomass burning is important for the atmospheric radiative process. Aerosol optical depth (AOD) observed to be high during burning period compared to pre- and post-burning days. Peak period of biomass burning is highly correlated with measured AOD and total columnar water vapor. Size distribution of aerosols showed bimodal size distribution during burning day and unimodal size distribution during pre- and post-burning days. Size distribution retrievals from biomass burning aerosols show dominance of accumulation mode particles. Weighted mean radius is high (0.22 microm) during burning period. Columnar content of aerosols observed to be high during burning period in addition to the drastic reduction of visibility. During the burning day Anderson sampler measurements showed dominance of accumulation mode particles. The diurnal averaged values of surface shortwave aerosol radiative forcing af biomass burning aerosols varies from -59 to -87 Wm(-2) on different days. Measured and modeled solar irradiances are also discussed in the paper.  相似文献   

8.
In the troposphere anthropogenic aerosol emissions are increasing in recent decades, which can influence the earth's climate. The present study addresses the characterization of aerosols and their radiative impacts over urban (Hyderabad) and rural (Srisailam) environments by using aerosol optical depth (AOD) measurements from MICROTOPS-II sunphotometer. AOD measurements over the urban site showed high values compared to the rural site. Over the urban environment aerosol forcing at the surface is as high as -42 W m(-2) and at the top of the atmosphere (TOA) is +10 W m(-2) whereas at the rural environment aerosol forcing at the surface has been observed to be -11 W m(-2) and at TOA it is observed to be +5.7 W m(-2). The difference between TOA and the surface forcing over the urban environment is +32 W m(-2) and over the rural environment is +5.3 W m(-2), which shows the absorption capacity of the respective atmospheres.  相似文献   

9.
Urban aerosol characterization gathering ground-based in situ and sunphotometer measurements have been performed for the city of Thessaloniki for two specific days: the 12th and 13th of June 1997. A representative aerosol model for Thessaloniki aerosols was tentatively constructed for each day. Four components have been selected from our chemical measurements: black carbon (BC), particulate organic matter (POM), inorganic fine water soluble particles (WS) and a residue coarse component which mainly contains coarse dust and sea-salt particles (CC). Size distribution and complex refractive index for (WS) and (CC) components were determined from published data. (CC) has been shown to have a small optical effect compared to the submicron components. Size distribution for carbonaceous particles was obtained from sensitivity tests on particulate number and visible Angström exponent. The impact of relative humidity on extinction and scattering coefficients has been calculated on 13 June with Mie theory and Hänel relationships. Parameters needed for this calculation were well known for WS particles only. For POM particles we have used the experimental curve of hygroscopic factors obtained by Hobbs et al. (1997) for urban aerosols sampled on the East coast of United States to determine the hydrophilic dependency of POM particles. Relative humidity has been shown to be an important parameter even for values lower than 50%. Optical apportionment calculation has been realized pointing out that more than 45% of the total extinction coefficient is due to (POM) particles and about 20 and 30% to (WS) and (BC), respectively.  相似文献   

10.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

11.
The purpose of this paper is to study the relationship between columnar aerosol optical thickness and ground-level aerosol mass. A set of Sun photometer, elastic backscattering lidar and TEOM measurements were acquired during April 2007 in Lille, France. The PM2.5 in the mixed boundary layer is estimated using the lidar signal, aerosol optical thickness, or columnar integrated Sun photometer size distribution and compared to the ground-level station measurements. The lidar signal recorded in the lowest level (240 m) is well correlated to the PM2.5 (R2 = 0.84). We also show that the correlation between AOT-derived and measured PM2.5 is significantly improved when considering the mixed boundary layer height derived from the lidar. The use of the Sun photometer aerosol fine fraction volume does not improve the correlation.  相似文献   

12.
Every year, during the pre-monsoon period (March–May), a pronounced increase in aerosol optical depth (AOD) is observed over the eastern Arabian Sea, which is attributed to the transport of continental aerosols. This paper presents the altitude distribution of tropospheric aerosols, characteristics of elevated aerosol layers and aerosol radiative heating of the atmosphere during the pre-monsoon season over Trivandrum (8.5°N, 77°E), a station located at the southwest coast of Indian peninsula which is covered by the eastern Arabian Sea plume. Altitude profiles of aerosol backscatter coefficient (βa) and linear depolarization ratio (LDR) reveal two distinct aerosol layers persisting between 0–2 km and 2–4 km. The layer at 2–4 km, which contributes about 25% of the AOD during polluted conditions, contains significant amount of non-spherical aerosols. This layer is prominent only when the advection of dry airmass occurs from the northern parts of the Indian subcontinent and northern Arabian Sea. Role of long-range transport in the development of this aerosol layer is further confirmed using latitude–altitude cross-section of βa observed by CALIPSO. Aerosol content in the layer below 2 km is large when advection of air occurs from the north and east Arabian Sea and is significantly small when it occurs from the southwest Arabian Sea or Indian Ocean. During the highly polluted conditions, aerosols tend to increase the diurnal mean atmospheric radiative heating rate by ~0.8 K day?1 at 500 m and 0.3 K day?1 at 3 km, which are about 80% and 30% of the respective radiative heating in the aerosol-free atmosphere.  相似文献   

13.
Aerosol optical and microphysical parameters from severe haze events observed in October 2005 at Gwangju, Korea (35.10°N, 126.53°E) were determined from the ground using a multi-wavelength Raman lidar, a sunphotometer, and a real-time carbon particle analyzer and from space using satellite retrievals. Two different aerosol types were identified based on the variability of optical characteristics for different air mass conditions. Retrievals of microphysical properties of the haze from the Raman lidar indicated distinct light-absorbing characteristics for different haze aerosols originating from eastern and northern China (haze) and eastern Siberia (forest-fire smoke). The haze transported from the west showed moderately higher absorbing characteristics (SSA = 0.90 ± 0.03, 532 nm) than from the northern direction (SSA = 0.96 ± 0.02). The organic/elemental carbon (OC/EC) ratio varied between 2.5 ± 0.4 and 4.1 ± 0.7.  相似文献   

14.
Measurements of gas–particle-partitioning coefficients for reactive mercury in dry urban and laboratory aerosol were found to strongly depend on ambient temperature. Samples of atmospheric and laboratory aerosols (defined as both the gas and particle phases) were collected using filter and absorbent methods and analyzed for reactive mercury using thermal desorption combined with cold vapor atomic fluorescence spectroscopy. Synthetic ambient aerosols were generated in the laboratory from ammonium sulfate and adipic acid mixed with mercuric chloride in a purpose-built aerosol reactor. The aerosol reactor was operated in a temperature-controlled laboratory. Linear relationships between the logarithm of inverse gas–particle partitioning and inverse temperature were observed and parameterized for use in the atmospheric modeling of reactive mercury. Reactive mercury was observed to partition from the particle to the gas phase as ambient temperature increased. Good agreement between measurements made using urban and laboratory aerosols was seen after gas–particle-partitioning coefficients were normalized for surface area instead of mass. Thermodynamic analyses of the urban and laboratory gas–particle-partitioning measurements revealed that the strength of interaction between reactive mercury and particle surfaces was suggestive of chemisorption. Gas–particle-partitioning coefficients made with the Tekran ambient mercury analyzer (AMA) also showed a dependence on temperature. However, the Tekran AMA partitioning coefficients did not agree well with partitioning coefficients measured using the filter-based methods. The disagreement is consistent with the 50 °C operational temperature of the Tekran AMA.  相似文献   

15.
We propose a source of aerosols in the lower atmosphere associated with the creation, growth, and recombination of ubiquitous cosmogenically generated ions. This particle source should be favorable in the relatively clean, stable marine boundary layer, providing a uniform, continuous fine particle generator in the presence of dimethylsulfide emissions. Through this mechanism, new sulfate aerosols can be formed at sulfuric acid vapor partial pressures well below the supersaturations required for homogeneous binary nucleation of sulfuric acid/water solutions, which is consistent with numerous observations of new particle formation under sub-saturated conditions. The evolving aerosols in turn control the acid vapor concentration and thus modulate the sizes of the precursor ions and the rate of new particle formation. A simple model representing this nonlinear coupled system predicts that the physical and chemical processes connecting ions, vapors, and aerosols effectively constrain the particle population to a relatively narrow range of values. This self-limiting behavior may explain in part the apparent stability of the marine sulfate aerosol, with mean concentrations of the order of several hundred per cubic centimeter.  相似文献   

16.
ABSTRACT

We propose a source of aerosols in the lower atmosphere associated with the creation, growth, and recombination of ubiquitous cosmogenically generated ions. This particle source should be favorable in the relatively clean, stable marine boundary layer, providing a uniform, continuous fine particle generator in the presence of dimethylsulfide emissions. Through this mechanism, new sulfate aerosols can be formed at sulfuric acid vapor partial pressures well below the supersaturations required for homogeneous binary nucleation of sulfuric acid/water solutions, which is consistent with numerous observations of new particle formation under sub-saturated conditions. The evolving aerosols in turn control the acid vapor concentration and thus modulate the sizes of the precursor ions and the rate of new particle formation. A simple model representing this nonlinear coupled system predicts that the physical and chemical processes connecting ions, vapors, and aerosols effectively constrain the particle population to a relatively narrow range of values. This self-limiting behavior may explain in part the apparent stability of the marine sulfate aerosol, with mean concentrations of the order of several hundred per cubic centimeter.  相似文献   

17.
18.
Asian aerosols in elevated layers over the Pacific Ocean were sampled with NASA wire-impactors and a FSSP optical particle spectrometer-probe aboard the NASA DC-8 aircraft in early March 1994. Strong variations in aerosol properties, primarily aerosol concentration, lead to derived mid-visible extinctions between 0.003 and 0.5/km. FSSP data usually identified two size-modes. The larger ‘coarse mode’ (radii of 1–3 μm) was assumed to be dust. The composition of the smaller ‘accumulation mode’ (radii of 0.1–0.3 μm) was based on the analysis of the wire-impactor samples, as significant amounts of soot reduce mid-visible single scattering albedos to the 0.87–0.92 range.Radiative forcing simulations investigated the impact of Asian outflow aerosol on atmospheric radiative fluxes and heating rates. Only events with larger optical depths were important. In those events the solar attenuation of the smaller size mode dominated the net-flux losses at the surface, with values similar those of urban-polluted and/or biomass burning aerosol types (as observed during the TARFOX and INDOEX field experiments). In contrast, changes to net-fluxes at the top of the atmosphere (ToA) for outflow cases are less negative—primarily due to the added greenhouse effect of the dust component. For the climate of the Earth-Atmosphere-System, ToA net-flux losses are considered a cooling, ToA net-flux gains are associated with warming. Weak cooling is determined for the Asian outflow cases under cloud-free conditions. The addition of a reported 50% cloud cover below the aerosol layer causes a switch to slight warming.  相似文献   

19.
Information on the relationship between black carbon (BC) and particle number levels in urban areas is limited. Therefore, investigating the relationship between BC and particle number levels in different particle size ranges at an urban area is worthwhile. This study used an aethalometer and scanning mobility particle sizer to measure the levels of BC and particle number simultaneously at an urban roadside in Taipei City. Measurement results show that hourly BC levels are 0.62–8.80 μg m?3 (mean?=?3.50 μg m?3) and hourly particle number levels are 4.21?×?103–4.64?×?104 particles cm?3 (mean?=?2.00?×?104 particles cm?3) in Taipei urban area. The BC and particle number levels peak during morning (7:00–9:00) and evening (16:00–18:00) rush hours on weekdays. Low BC and particle number levels exist in the early morning hours. Time variations in BC levels are the same as those of particle number levels in this study, clearly indicating that BC and particles are likely released from the same emission source. Additionally, BC levels in the urban area are more strongly associated with ultrafine particle levels than with total particle number levels, particularly in the size range of 56–180 nm. According to measurement results, most BC in aerosols in urban areas can be in the ultrafine size range.  相似文献   

20.
The characteristics of Aerosol Optical Depth (AOD) and Angstrom exponent were analyzed and compared using Cimel sunphotometer data from 2007 to 2008 at five sites located in the Yangtze River Delta region of China. The simultaneous measurements between Lin’an and ZFU showed a very high consistency of AOD at all wavelengths. The differences are less than 0.02 for Angstrom exponent and AOD at all wavelengths. The mean values of AOD at 440 nm at the Pudong, Taihu and Lin’an were about 0.74 ± 0.43, 0.85 ± 0.46, and 0.89 ± 0.46, respectively. The mean values of Angstrom exponents were about 1.27 ± 0.30, 1.20 ± 0.28 and 1.32 ± 0.35, respectively. The variation of monthly averaged AOD over Pudong showed a single peak distribution, with the maximum value occurring in July (AOD440nm 1.26 ± 0.61) and minimum in January (AOD440nm 0.50 ± 0.27). However, the variations of monthly averaged AOD at Taihu and Lin’an showed a bi-modal distribution. There were peak values of AOD occurring in July (AOD440nm 1.41 ± 0.49) and September (AOD440nm 1.22 ± 0.52) for Taihu. For Lin’an, the two peak values of AOD occurred in June (AOD440nm 1.17 ± 0.69) and September (AOD440nm 1.28 ± 0.46). The AOD accumulated mainly between 0.30–0.90(68%), 0.30–1.20(75%) and 0.30–1.20 (~75%) at Pudong, Taihu, and Lin’an, respectively. The Angstrom exponent accumulated mainly between 1.10–1.60 (75%), 1.10–1.50 (63%) and 1.20–1.60, 50% (50%) at Pudong, Taihu, and Lin’an, respectively.The synchronized observation showed that the AOD at Pudong was larger than those at Dongtan by 0.03, 0.03, 0.04, 0.07, and 0.08 at wavelengths of 1020 nm, 870 nm, 670 nm, 500 nm and 440 nm, respectively. The synchronized observations at Pudong, Taihu and Lin’an showed that the three stations had high level AOD with means at 440 nm about 0.68, 0.73, and 0.78, respectively. The relationship between MODIS retrieved and ground-based measured AOD shows good agreement with R2 ranging from 0.68 to 0.79 at Pudong, Taihu, Lin’an and Dongtan. The MODIS results were overestimated comparing the ground measurements at Pudong, Taihu, and Dongtan but exceptional at Lin’an.The analysis results between aerosol optical properties and wind measurement at Pudong showed that the wind speed from the east correlates with the lower observed AOD. The back trajectory analysis indicates that more than 50% airmasses were from the marine area at Pudong, while back trajectories distribution is relatively homogeneous at Lin’an.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号