首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A particle measurement campaign was conducted in a suburban environment near a major road in Kuopio, Central Finland from 3 August to 9 September 1999. The mass concentrations of fine particles (PM2.5) were measured simultaneously at distances of 12, 25, 52 and 87 m from the centre of a major road at a height of 1.8 m, using identical samplers. The concentration measurements were conducted during 16 daytime hours (from 6.00 a.m. to 10.00 p.m.) for 27 days. Traffic flows and relevant meteorological parameters were measured on-site; meteorological measurements from a nearby synoptic weather station were also utilised. We also suggest a preliminary model for predicting the concentrations of PM2.5 and apply this model in order to analyse the measured data. The regionally and long-range transported contribution was evaluated on the basis of a semi-empirical mathematical model utilising as input values the daily sulphate, nitrate and ammonium measurements at the EMEP stations (Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe). The influence of primary vehicular emissions from the nearest roads was evaluated using a roadside emission and dispersion model, CAR-FMI, in combination with a meteorological pre-processing model, MPP-FMI. The contribution of non-exhaust particulate matter emissions (including resuspension of particulate matter from road surfaces) was estimated simply to be directly proportional to the concentrations originating from primary vehicular emissions. Comparison of the predicted results and measurements yields information on the relative importance of various source categories of the measured concentrations of PM2.5. The regionally and long-range transported contribution, the primary and non-exhaust vehicular emissions, and other sources were estimated to contribute on average 41±6%, 33±6% and 26±7% of the observed PM2.5 concentrations, respectively. The model presented could also be applied in other European cities for analysing the source contributions to measured fine particulate matter concentrations.  相似文献   

2.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

3.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

4.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

5.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

6.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

7.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

8.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

9.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

10.
In this study, the seasonal variation of different types of particulates was investigated in a fixed roadside station in heavily trafficked urban area of Hong Kong. Aerosol samples for total suspended particles (TSP), PM10 and PM2.5 were collected from June 1998 to May 1999 at a roadside site. Meteorological conditions such as relative humidity (RH), rainfall and prevailing wind direction were found to affect the mass concentration of TSP, PM10 and coarse particulates at roadside level. Large size particles had an apparent seasonal variation, with higher concentration level in winter and lower in summer. The dry continental winter monsoon and the wet oceanic summer monsoon are the dominating factors. On the other hand, annual variation of PM2.5 is relatively insignificant, suggesting that they are mainly from local traffic emission. PM10 accounted for 62% of the TSP, while PM2.5 accounted for 46%. The annual PM2.5/PM10 is high with PM2.5 responsible for 74% of PM10. In our heavily trafficked roadside fixed site, TSP exceeded the annual average of the Hong Kong Air Quality Objective by a factor of 1.53 while PM10 exceeded by 1.39. The annual average concentration of PM2.5 exceeded the National Ambient Air Quality Standard (NAAQS) annual average of 15 μg m−3 by a factor of 3.8 and is a cause of concern. A total of the 24 h average PM2.5 exceeded NAAQS by 33%. According to our data reported, fine particulate pollution is serious in Hong Kong.  相似文献   

11.
Ambient concentrations of n-alkanes with carbon number ranging from 17 to 36 were determined for PM2.5 samples collected in Taipei city during September 1997–February 1998. The measured concentrations of particulate n-alkanes were in the range of 69–702 ng m−3, considerably higher than the concentration levels observed in Los Angeles and Hong Kong. The concentration distributions of n-alkanes homologues obtained in this study exhibited peaks at C19, C24 or C25. This suggests that fossil fuel utilization, such as vehicular exhaust and lubricant residues, was an important contributor to the Taipei aerosol. Source apportionment of PM2.5 was conducted using carbon preference index (CPI, defined as the ratio of the total concentration of particulate n-alkanes with odd carbon number to that with even carbon number) and U : R ratio (the concentration ratio of unresolved components to resolved components obtained from chromatograms). The low CPI value (0.9–1.9) and high U : R ratio (2.6–6.4) for each sample further confirmed that fossil fuel utilization was the major source of n-alkanes in ambient PM2.5 of Taipei city. Estimates from these results showed that 69–93% of the n-alkanes in PM2.5 of the Taipei aerosol originated from vehicular exhaust. The higher concentration level of particulate n-alkanes in the Taipei aerosol was mainly a result of vehicular emissions.  相似文献   

12.
Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with size selective (PM10 and PM2.5) inlets. Mean particle number counts at three sites range from 2.86×104 to 9.60×104 cm-3. A traffic-influenced location showed a substantially higher ratio of particle number to PM10 mass than a nearby background location despite being some 70 m from the roadway. Operating two condensation nucleus counters in tandem to determine particles in the 3–7 nm size range by difference showed signficant numbers of particles in this range, apparently related to homogeneous nucleation processes. Measurements with the Scanning Mobility Particle Sizer showed a clear difference between roadside size distributions and those at a nearby background location with an additional mode in the roadside samples below 10 nm diameter. Particle number counts were found to show a significant linear correlation with PM10 mass (r2=0.44; n=44 for 24 h data at an urban background location), although during one period of high pollution a curvilinear relationship was found. Measurements of the diurnal variation in PM10 mass, particle number count and Fuchs surface area show the same general pattern of behaviour of the three variables, explicable in terms of vehicle emission source strength and atmospheric dispersion, although the surface area growth was out of phase with the particle number and mass. It appears that particle number gives the clearest indication of recent road traffic emissions.  相似文献   

13.
Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship between mobile source emissions and subsequent fine particulate matter (PM2.5) exposure. Since this relationship varies by location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered emissions of primary PM2.5 as well as particle precursors SO2 and NOx from each of 3080 counties in the US. We modeled the relationship between these emissions and total US population exposure to PM2.5, making use of a source–receptor matrix developed for health risk assessment. For primary PM2.5, we found a median iF of 1.2 per million, with a range of 0.12–25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away. For secondary ammonium sulfate from SO2 emissions, the median iF was 0.41 per million (range: 0.050–10), versus 0.068 per million for secondary ammonium nitrate from NOx emissions (range: 0.00092–1.3). The median distance to half of the total exposure was greater for secondary PM2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using exhaustive population predictors explained much of the variation in primary PM2.5 iF (R2=0.83) as well as secondary sulfate and nitrate iF (R2=0.74 and 0.60), with greater near-source contribution for primary than for secondary PM2.5. We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of secondary PM2.5 or primary PM2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models are warranted for primary PM2.5 in urban areas due to the substantial contribution of near-source populations.  相似文献   

14.
Several types of fuels, including coal, fuel wood, and biogas, are commonly used for cooking and heating in Chinese rural households, resulting in indoor air pollution and causing severe health impacts. In this paper, we report a study monitoring multiple pollutants including PM10, PM2.5, CO, CO2, and volatile organic compounds (VOCs) from fuel combustion at households in Guizhou province of China. The results showed that most pollutants exhibited large variability for different type of fuels except for CO2. Among these fuels, wood combustion caused the most serious indoor air pollution, with the highest concentrations of particulate matters (218~417 μg m?3 for PM10 and 201~304 μg m?3 for PM2.5), and higher concentrations of CO (10.8 ± 0.8 mg m?3) and TVOC (about 466.7 ± 337.9 μg m?3). Coal combustion also resulted in higher concentrations of particulate matters (220~250 μg m?3 for PM10 and 170~200 μg m?3 for PM2.5), but different levels for CO (respectively 14.5 ± 3.7 mg m?3 for combustion in brick stove and 5.5 ± 0.7 mg m?3 for combustion in metal stove) and TVOC (170 mg m?3 for combustion in brick stove and 700 mg m?3 for combustion in metal stove). Biogas was the cleanest fuel, which brought about the similar levels of various pollutants with the indoor case of non-combustion, and worth being promoted in more areas. Analysis of the chemical profiles of PM2.5 indicated that OC and EC were dominant components for all fuels, with the proportions of 30~48%. A high fraction of SO42? (31~34%) was detected for coal combustion. The cumulative percentages of these chemical species were within the range of 0.7~1.3, which was acceptable for the assessment of mass balance.  相似文献   

15.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

16.
Scanning electron microscopy coupled to energy-dispersive x-ray spectroscopy (SEM/EDX) was used to quantify individual bioparticles in PM2.5 samples collected during the Pittsburgh Air Quality Study. Microscopy-based estimates of primary biogenic organic aerosol (PBOA) mass were compared to carbohydrate mass associated with PM2.5. Carbohydrates show substantial seasonal variations, with higher concentrations in the spring and the fall. During the summer, carbohydrates were about 30% of the estimated PBOA concentrations, but in the winter carbohydrate concentrations often greatly exceeded the PBOA mass estimate. Spores and insect detritus were the most abundant PBOA types in the summer samples, while winter samples were comprised predominantly of a mixture of microorganisms, insect and vegetative detritus. During the summer PBOA contributed on average 6.9 ± 5.4% by mass of the PM2.5 versus 3.3 ± 1.4% of the PM2.5 mass during the winter.  相似文献   

17.
Fine particles were collected over four seasons from October 1995 to August 1996 to evaluate the chemical characteristics of principal PM2.5 components in Chongju, South Korea. The annual mean concentrations of PM2.5 (dp⩽2.5 μm), sulfate, nitrate, ammonium, elemental carbon (EC) and organic carbon (OC) were 44.2, 8.22, 3.63, 2.84, 4.44 and 4.99 μg m−3, respectively. The sum of the species measured from this study accounted for 50–62% of the PM2.5 mass. Sulfate was the most abundant species and constituted 13–23% of the PM2.5 mass. The EC and OC accounted for 17–28% of PM2.5. The correlation between OC and EC was strong, and the annual mean ratio of OC/EC was 1.12, suggesting that OC measured in the Chongju area may be emitted directly in particulate form as a primary aerosol.  相似文献   

18.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

19.
Statistically significant downward trends in measured UK annual mean PM10 concentrations have been observed at eight out of the nine urban background monitoring sites between the start of monitoring in 1992 or 1993 and 2000.Site-specific projections of the individual components of measured PM10 concentrations have been derived for the period 1992–2000 at three monitoring sites from receptor modelling results for 1999 monitoring data. Measured annual average PM10 concentrations declined to between 71% and 66% of the 1992 values during this period at the sites studied. The largest contributions to the decline in total PM10 are from secondary particles at London Bloomsbury (40%, 3.4 μg m−3, tapered element oscillating microbalance (TEOM)), stationary sources at Belfast Centre (53%, 4.6 μg m−3, TEOM) and roadside traffic emissions at Bury Roadside (49%, 5.0 μg m−3, TEOM). The good agreement between the projected total PM10 concentrations and measured values for the years 1992–2000 indicate that the combination of the receptor model and the site-specific projections provide a suitably robust method for predicting future PM10 concentrations and the quantification of the impact of possible future policy measures to reduce PM10 concentrations. The good agreement between the projections and measured concentration also provides a useful verification of the trends in emissions inventory estimates for the 1990s.Projections of estimated PM10 concentrations have also been calculated for the London Bloomsbury site for the period from 1970 to 1991. Annual mean concentrations are predicted to have been in the range from 30 to 35 μg m−3, TEOM from 1977 to 1991 but much higher at values between 39 and 46 μg m−3, TEOM in the early 1970s.  相似文献   

20.
The concentrations of PM2.5−10, PM2.5 and associated water-soluble inorganic species (WSIS) were determined in a coastal site of the metropolitan region of Rio de Janeiro, Southeastern Brazil, from October 1998 to September 1999 (n=50). Samples were dissolved in water and analyzed for major inorganic ions. The mean (± standard deviation; median) concentrations of PM2.5−10 and PM2.5 were, respectively, 26 (± 16; 21) μg m−3 and 17 (± 13; 14) μg m−3. Their mean concentrations were 1.7–1.8 times higher in dry season (May–October) than in rainy season (November–April). The WSIS comprised, respectively, 34% and 28% of the PM2.5−10 and PM2.5 masses. Chloride, Na+ and Mg2+ were the predominant ions in PM2.5−10, indicating a significant influence of sea-salt aerosols. In PM2.5, SO42− (∼97% nss-SO42−) and NH4+ were the most abundant ions and their equivalent concentration ratio (SO42−/NH4+ ∼1.0) suggests that they were present as (NH4)2SO4 particles. The mean concentration of (NH4)2SO4 was 3.4 μg m−3. The mean equivalent PM2.5 NO3 concentration was eight times smaller than those of SO42− and NH4+. The PM2.5 NO3 concentration in dry season was three times higher than in rainy season, probably due to reaction of NaCl (sea salt) with HNO3 as a result of higher levels of NOy during the dry season and/or reduced volatilization of NH4NO3 due to lower wintertime temperature. Chloride depletion was observed in both size ranges, although more pronouncely in PM2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号