首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
PM10 levels of the 16 US-EPA Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) were measured from March 17 to 31, 2003, in 8-h time bins (morning, afternoon and nighttime) at Merced, a source site dominated by vehicular traffic emissions near the center of Mexico City, and at Pedregal, a receptor area located downwind in a residential area of low traffic. Along with PAH, elemental (EC) and organic carbon (OC), mass, and prevailing meteorological parameters were measured. At the source location, measured concentrations of benzo[a]pyrene (BAP), an agent suspected of being carcinogenic to humans and of causing oxidative DNA damage, reached concentrations as high as 2.04 and 2.11 ng m?3 during the morning of a weekday and the night period of a holiday. Compared with source dominated areas in Central Los Angeles, the BAP levels found in Central Mexico City are approximately 6 times higher. Benzo[ghi]perylene (BGP) levels were, in general, the highest among the target PAH, both at the source (7.2 ng m?3) and the receptor site (2.8 ng m?3), suggesting that, at both locations, exhaust emission by light-duty (LD) vehicles is an important contributor to the atmospheric PAH burden. Higher PAH concentrations were observed during the morning period (5:00–13:00 h) at the source and the receptor site. The concentrations of PAHs found predominantly in the particle-phase (MW > 202) correlated well (r = 0.57–0.71) with the occurrence of surface thermal inversions and with mixing heights (r = ?0.57 to ?0.72). Organic and elemental carbon ratios also indicated that Pedregal is impacted by secondary aerosols during the afternoon hours.  相似文献   

2.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

3.
We investigated the PAH contamination of Naples urban area, densely populated and with high traffic flow, by analyses of environmental matrices: soil and Quercus ilex leaves. Being some PAHs demonstrated to have hazardous effects on human health, the accumulation of carcinogenic and toxic PAHs (expressed as B(a)Peq) was evaluated in the leaves and soil. The main sources of the PAHs were discriminated by the diagnostic ratios in the two matrices. The urban area appeared heavily contaminated by PAHs, showing in soil and leaves total PAH concentrations also fivefold higher than those from the remote area. The soil mainly accumulated heavy PAHs, whereas leaves the lightest ones. Median values of carcinogenic PAH concentrations were higher in soil (440 ng g?1 d.w.) and leaves (340 ng g?1 d.w.) from the urban than the remote area (60 and 70 ng g?1 d.w., respectively, for soil and leaves). Also, median B(a)Peq concentrations were higher both in soil and leaves from the urban (137 and 63 ng g?1 d.w., respectively) than those from the remote area (19 and 49 ng g?1 d.w., respectively). Different from the soils, the diagnostic ratios found for the leaves discerned PAH sources in the remote and urban areas, highlighting a great contribution of vehicular traffic emission as main PAH source in the urban area.  相似文献   

4.
The results from a year-long study of the organic composition of PM2.5 aerosol collected in a rural area influenced by a highway of Spain are reported. The lack of prior information related to the organic composition of PM2.5 aerosol in Spain, concretely in rural areas, led definition of the goals of this study. As a result, this work has been able to characterize the main organic components of atmospheric aerosols, including several compounds of SOA, and has conducted a multivariate analysis in order to assign sources of particulate matter. A total of 89 samples were taken between April 2004 and April 2005 using a high-volume sampler. Features and abundance of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and acids were separately determined using gas chromatography/mass spectrometry and high performance liquid chromatography analysis. The Σn-alkane and ΣPAHs ranged from 3 to 81 ng m?3 and 0.1 to 6 ng m?3 respectively, with higher concentrations during colder months. Ambient concentrations of Σalcohols and Σacids ranged from 21 to 184 ng m?3 and 39 to 733 ng m?3, respectively. Also, several components of secondary organic aerosol have been quantified, confirming the biogenic contribution to ambient aerosol. In addition, factor analysis was used to reveal origin of organic compounds associated to particulate matter. Eight factors were extracted accounting more than 83% of the variability in the original data. These factors were assigned to a typical high pollution episode by anthropogenic particles, crustal material, plant waxes, fossil fuel combustion, temperature, microbiological emissions, SOA and dispersion of pollutants by wind action. Finally, a cluster analysis was used to compare the organic composition between the four seasons.  相似文献   

5.
Twenty-eight polycyclic aromatic hydrocarbons (PAH) and methylated PAHs (Me-PAH) were measured in daily PM2.5 samples collected at an urban site, a suburban site, and a rural site in and near Atlanta during 2004 (5 samples/month/site). The suburban site, located near a major highway, had higher PM2.5-bound PAH concentrations than did the urban site, and the rural site had the lowest PAH levels. Monthly variations are described for concentrations of total PAHs (∑PAHs) and individual PAHs. PAH concentrations were much higher in cold months than in warm months, with average monthly ∑PAH concentrations at the urban and suburban-highway monitoring sites ranging from 2.12 to 6.85 ng m?3 during January–February and November–December 2004, compared to 0.38–0.98 ng m?3 during May–September 2004. ∑PAH concentrations were found to be well correlated with PM2.5 and organic carbon (OC) within seasons, and the fractions of PAHs in PM2.5 and OC were higher in winter than in summer. Methyl phenanthrenes were present at higher levels than their un-substituted homologue (phenanthrene), suggesting a petrogenic (unburned petroleum products) input. Retene, a proposed tracer for biomass burning, peaked in March, the month with the highest acreage and frequency of prescribed burning and unplanned fires, and in December, during the high residential wood-burning season, indicating that retene might be a good marker for burning of all biomass materials. In contrast, potassium peaked only in December, indicating that it might be a more specific tracer for wood-burning.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) were determined by the GC-MS chromatography in the leaves of Quercus ilex L., an evergreen Mediterranean oak, to monitor the degree of pollution in the urban area of Naples compared to remote areas. Leaf samples were collected in July 1998 from four urban parks, six roadsides and two sites in remote areas. The total PAH contents in Q. ilex leaves ranged from 106.6 in a control site to 4607.5 ng/g d.w. along a road with a high traffic flow. The mean concentration factors (urban/control) were 3.8 for the parks and 15 for the roads. The contribution of carcinogenic PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) was higher in urban area and differed according to the site, ranging from 6.7% to 21.3%. The total PAH burden in control sites was dominated by the low molecular weight PAHs, whilst along the urban roads fluoranthene, pyrene and benz[a]anthracene among the measured PAHs showed the highest values. PAHs were positively correlated (P<0.01) to trace metals measured in a previous study.  相似文献   

7.

From simultaneous air and water polychlorinated biphenyl (PCB) measurements collected in September 2010, we re-evaluated the direction and magnitude of net air-water exchange of PCBs in southwest Lake Michigan and compared them with estimations made using similar approaches 15 years prior. Air and water samples were collected during a research expedition on Lake Michigan at 5 km off the coast of Chicago, with prevailing winds from the southwest of our location. Gas-phase ΣPCB concentrations ranged from 190 to 1100 pg m?3 with a median of 770 pg m?3, which is similar to the concentrations measured in the City of Chicago at the same time and similar to concentrations measured in this part of the lake over the last 20 years. Water dissolved-phase ΣPCB concentrations ranged from 150 to 170 pg L?1 with a median of 160 pg L?1, which is one-tenth of that measured in the 1990s. ?PCB net fluxes showed a slightly absorptive behavior, with a median of (?) 21 ng m?2 day?1 and an interquartile range of (?) 47 to (+) 5 ng m?2 day?1, where (?) and (+) fluxes indicate absorption and volatilization, respectively. Airborne PCB concentrations were higher when the winds were coming from Chicago and drive the deposition. Our fluxes are not significantly different from estimations from 1994 and 1995 and suggest that absorption of PCBs into the waters is slightly more prevalent than 15 years ago. It was confirmed that Chicago remains an important atmospheric source of PCBs to Lake Michigan.

  相似文献   

8.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   

9.
Measurements of gaseous elemental mercury (GEM), particulate mercury (Hgp), and reactive gaseous mercury (RGM) were concurrently recorded at an urban site in Detroit and a rural site in Dexter, both in Michigan for the calendar year 2004. Their average concentrations (±standard deviation) for the urban area were 2.5 ± 1.4 ng m?3, 18.1 ± 61.0 pg m?3, and 15.5 ± 54.9 pg m?3, respectively, while their rural counterparts were 1.6 ± 0.6 ng m?3, 6.1 ± 5.5 pg m?3, and 3.8 ± 6.6 pg m?3, respectively. The medians of urban-to-rural ratios of Hg concentrations indicate approximately 1-fold, 2-fold, and 3-fold gradients between Detroit and Dexter for GEM, Hgp, and RGM, respectively. The urban–rural differences in Hg also varied considerably on different temporal scales and with wind flow patterns, which was most evident in RGM. Our results show that while Hg at both sites was impacted by regional sources, meteorological conditions, and photochemical transformations, the extent of variations in the observed urban-to-rural gradients, particularly in RGM, cannot be fully accounted for by these processes. Both analyses of the annual data and case studies indicate that the more variable and episodic nature of Hg, particularly RGM, seen in Detroit compared with Dexter, was the result of direct impact from local anthropogenic sources.  相似文献   

10.
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM2.5 and PM10) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM2.5 and PM10 fractions were collected using a dichotomous sampler (10 L min?1, 24 h) with Teflon? filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM2.5 in 2009) was 0.99 ng m?3 (NHV) and 3.3 ng m?3 (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m?3 and 0.12 ng m?3 for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaPeq), where the overall toxicity of a PAH mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaPeq median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m?3 and 1.2–1.4 ng m?3 for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m?3, related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

12.
Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet–visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43?±?0.4 and 316?±?1.4 μg/m3. Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m3.  相似文献   

13.
The concentrations of 15 priority PAHs were determined in the atmospheric gaseous and particulate phases from nine sites across Assiut City, Egypt. While naphthalene, acenaphthene, and fluorene were the most abundant in the gaseous phase with average concentrations of 377, 184, and 181 ng/m3, benzo[b]fluoranthene, chrysene, and benzo[g,h,i]perylene showed the highest levels in the particulate phase with average concentrations of 76, 6, and 52 ng/m3. The average total atmospheric concentration of target PAHs (1,590 ng/m3) indicates that Assiut is one of the highest PAH-contaminated areas in the world. Statistical analysis revealed a significant difference between the levels of PAHs in the atmosphere of urban and suburban sites (P?=?0.029 and 0.043 for gaseous and particulate phases, respectively). Investigation of diagnostic PAH concentration ratios revealed vehicular combustion and traffic exhaust emissions as the major sources of PAHs with a higher contribution of gasoline rather than diesel vehicles in the sampled areas. Benzo[a]pyrene has the highest contribution (average?=?32, 4 % for gaseous and particulate phases) to the total carcinogenic activity (TCA) of atmospheric PAHs. While particulate phase PAHs have higher contribution to the TCA, gaseous phase PAHs present at higher concentrations in the atmosphere are more capable of undergoing atmospheric reactions to form more toxic derivatives.  相似文献   

14.
Air–water exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in air and water samples from two sites on the Kenting coast, located at the southern tip of Taiwan, from January to December 2010. There was no significant difference in the total PAH (t-PAH) concentrations in both gas and dissolved phases between these two sites due to the less local input which also coincided to the low levels of t-PAH concentration; the gas and dissolved phases averaged 1.29 ± 0.59 ng m?3 and 2.17 ± 1.19 ng L?1 respectively. The direction and magnitude of the daily flux of PAHs were significantly influenced by wind speed and dissolved PAH concentrations. Individual PAH flux ranged from 627 ng m?2 d?1 volatilization of phenanthrene during the rainy season with storm–water discharges raising dissolved phase concentration, to 67 ng m?2 d?1 absorption of fluoranthene during high wind speed periods. Due to PAH annual fluxes through air–water exchange, Kenting seawater is a source of low molecular weight PAHs and a reservoir of high molecular weight PAHs. Estimated annual volatilization fluxes ranged from 7.3 μg m?2 yr?1 for pyrene to 50 μg m?2 yr?1 for phenanthrene and the absorption fluxes ranged from ?2.6 μg m?2 yr?1 for chrysene to ?3.5 μg m?2 yr?1 for fluoranthene.  相似文献   

15.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

16.
Atmospheric mercury (Hg) species, including gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate-bound mercury (Hgp), were monitored near three sites, including a cement plant (monitored in 2007 and 2008), an urban site and a rural site (both monitored in 2005 and 2008). Although the cement plant was a significant source of Hg emissions (for 2008, GEM: 2.20 ± 1.39 ng m?3, RGM: 25.2 ± 52.8 pg m?3, Hgp 80.8 ± 283 pg m?3), average GEM levels and daytime average dry depositional RGM flux were highest at the rural site, when all three sites were monitored sequentially in 2008 (rural site, GEM: 2.37 ± 1.26 ng m?3, daytime RGM flux: 29 ± 40 ng m?2 day?1). Photochemical conversion of GEM was not the primary RGM source, as highest net RGM gains (75.9 pg m?3, 99.0 pg m?3, 149 m?3) occurred within 3.0–5.3 h, while the theoretical time required was 14–23 h. Instead, simultaneous peaks in RGM, Hgp, ozone (O3), nitrogen oxides, and sulfur dioxide in the late afternoon suggested short-range transport of RGM from the urban center to the rural site. The rural site was located more inland, where the average water vapor mixing ratio was lower compared to the other two sites (in 2008, rural: 5.6 ± 1.4 g kg?1, urban: 9.0 ± 1.1 g kg?1, cement plant: 8.3 ± 2.2 g kg?1). Together, these findings suggested short-range transport of O3 from an urban area contributed to higher RGM deposition at the rural site, while drier conditions helped sustain elevated RGM levels. Results suggested less urbanized environments may be equally or perhaps more impacted by industrial atmospheric Hg emissions, compared to the urban areas from where Hg emissions originated.  相似文献   

17.
In this study, the leaves of Quercus ilex L. were selected as possible bioaccumulators of polycyclic aromatic hydrocarbons (PAHs). Quercus is an evergreen plant that occurs widely in both urban and rural areas. Several sites (urban roadside, urban, urban park, suburban and rural) in and around Palermo city were investigated.The purpose of this research was to optimize analytical method for quercus leaves, investigate the degree of contamination in the urban area of Palermo by comparing PAH concentration in leaves of quercus from the several sites, establish distribution patterns and relate them to possible sources of PAHs. To this aim, the 16 recommended as priority pollutants by the Environmental Protection Agency (EPA) and perylene were analyzed. PAHs were positively correlated to atmospheric particulate gravimetrically determined on filters aspiring a known volume of air in the various stations.The analyses have been performed by gas chromatography coupled to mass spectrometry (GC–MS) in selected ion monitoring (SIM) mode. The total PAH content in the samples ranged from 92 to 1454 μg kg−1 d.w. The higher amounts of PAHs detected in leaves of quercus from the urban area of Palermo compared with the control site are diagnostic of air contamination, in particular in the zones with heavy traffic. The determination of PAHs in the leaves of quercus allows us, with very simple and fast procedures, to assess the quality of the air over a longer period, since PAHs are accumulated over the whole lifetime of the leaves, irrespective of atmospheric conditions at the moment of sampling.  相似文献   

18.
Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical–chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A “mean sample” for the 14-month period would contain a total PAH concentration of 13 835 ± 1625 pg m−3 and 122 ± 17 pg m−3 of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18 900 ± 2140 pg m−3 of PAHs and 150 ± 97 pg m−3 of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293 ± 1178 pg m−3 for the PAHs and to 97 ± 13 pg m−3 for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) were measured in the Baltimore and adjacent Chesapeake Bay in July 1997. Time series of 4- and 12-h samples were taken at two sites 15 km apart in order to evaluate the influence of a number of processes on the short-term variability of PAH in the Baltimore and northern Chesapeake Bay atmospheres. PAH concentrations were 2–3-fold higher in the Baltimore atmosphere than in the adjacent Chesapeake Bay atmosphere. For example, gas-phase phenanthrene and pyrene concentrations were 12.5 and 2.14 ng m−3 in the Baltimore site and 5.57 and 0.548 ng m−3 in the Chesapeake Bay, respectively. The influence of wind direction, wind speed and temperature was evaluated by multiple linear regressions which indicated that atmospheric gas-phase PAH concentrations over the Chesapeake Bay were significantly higher when the air mass was from the urban/industrial Baltimore area. Furthermore, the increase of gas-phase low-MW PAH concentrations with temperature and wind speed suggests that volatilization from the bay is an important source of pollutants to the atmosphere, at least when air masses are not influenced by the Baltimore urban and industrial area. Indeed, while on the long-term, the Chesapeake Bay is a receptor of atmospherically deposited PAHs, on the short-term and during appropriate meteorological conditions, the bay acts as a source of pollutants to the atmosphere. Aerosol-phase PAH concentrations and temporal trends showed a strong dependence on aerosol soot content due to the high affinity of PAHs to the graphitic structure of soot. These results confirm the important influence of urban areas as a source of pollution to adjacent aquatic environments and as a driving factor of the short-term variability, either directly by transport of urban-generated pollutants or by volatilization of previously deposited pollutants. Conversely, the complex diurnal trends of gas-phase PAHs at the Baltimore site suggests that degradation processes dominate the diurnal trends of PAHs in urban atmospheres. This conclusion is supported by estimated rate constants for PAH reaction with OH radicals which show good agreement with reported values within a factor of two.  相似文献   

20.
Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available.In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM10 and PM2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650–1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called “pulling equations”.ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m?3 (17%) in PM10, 2.2 μg m?3 (8%) of PM2.5 and 0.3 μg m?3 (2%) of PM1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total traffic emissions respectively in PM10, PM2.5 and PM1. Therefore the overall traffic contribution resulted in 18 μg m?3 (46%) in PM10, 14 μg m?3 (51%) in PM2.5 and 8 μg m?3 (48%) in PM1. In PMF2 this mass explained by road dust resuspension was redistributed among the rest of sources, increasing mostly the mineral, secondary nitrate and aged sea salt contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号