首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
2011年8月—2012年7月间于东莞市生活区(NC)点和工业区(ZT)点采集大气PM10/PM2.5/PM1样品,并检测分析了颗粒物上的多环芳烃(PAHs)和正构烷烃。粒径分布结果显示,PAHs和正构烷烃均主要富集在PM1上,而正构烷烃富集程度更高。PAHs环数分析结果显示,PM1中主导PAHs为6环,PM1~2.5和PM2.5~10中则为4环。利用特定比值法分析PAHs来源,结果表明,生活区NC点大气颗粒物中PAHs主要来自汽油车尾气、天然气燃烧、燃煤源和烹饪源,而工业区ZT点则主要来自柴油车尾气、燃煤和木材燃烧。通过主峰碳数、碳优势指数、植物蜡贡献率等方法分析正构烷烃来源,结果表明,化石燃料燃烧是东莞市大气颗粒物中正构烷烃的主要贡献源,其次是高等植物蜡排放,贡献率约为10.9%~28.9%。化石燃料燃烧源贡献率对PM1的贡献率明显较PM1~2.5和PM2.5~10高。  相似文献   

2.
武汉市冬夏季大气PM2.5浓度及其烃类化合物的变化特征   总被引:3,自引:0,他引:3  
分析了武汉市2009年冬夏两个季节大气PM2.5的浓度,并用气相色谱/质谱(GC/MS)技术研究了烃类化合物组成及变化特征。结果表明,PM2.5的质量浓度为25.0~302.4μg/m3,冬季明显高于夏季。检测出nC11~nC34正构烷烃,高碳数部分奇偶优势明显,碳优势指数(CPI)在1.1~2.9,具有高等植物蜡和人为源输入特征,冬夏季分布差异较大;藿烷和甾烷的普遍检出证实了大气颗粒物已明显受到化石燃料残余物的污染,且在冬季浓度相对较高;高环数多环芳烃含量较高,特征性诊断参数表明机动车排放相对较大。  相似文献   

3.
南宁市大气颗粒物TSP、PM10、PM2.5污染水平研究   总被引:14,自引:1,他引:14  
2002年在南宁市的5个典型城市功能区内,共采集了125个大气样品(按季节分别采集),初步调查了大气中颗粒物TSP、PM10、PM2.5的污染状况。结果表明,南宁市TSP、PM10、PM2.5的污染很严重,超标率分别为67.5%、82.5%、92.5%,对人体健康危害更大的PM2.5占到了PM10的63.5%左右。重污染区PM2.5的浓度超过轻污染区近一倍。  相似文献   

4.
杭州城市大气消光系数和能见度的影响因子研究   总被引:8,自引:0,他引:8  
为了解杭州市能见度下降与大气污染之间的关系,在2001年5月至2002年5月对不同粒径的颗粒物(PM10、PM2.5)的质量浓度进行了观测,结合晴天天气条件下的大气能见度,推算污染物和水汽分子对大气的消光散射,发现细微颗粒物的散射消光特性对杭州市能见度下降起主要作用,并得到能见度与细微颗粒物浓度比值(PM2.5/PM10)的关系;分析了大气能见度和消光系数与PM2.5/PM10和相对湿度的相关系数。  相似文献   

5.
鞍山市大气中挥发性有机物的污染特征研究   总被引:3,自引:0,他引:3  
对鞍山市不同功能区(工业区、工业区附近、居住区和对照区)的大气进行分季节(夏、冬季)采样,分析该市大气中挥发性有机物(VOCs)的污染水平和季节变化特征.结果表明,夏、冬季的大气中的VOCs浓度变化差异显著,总体来说夏季大气中的VOCs浓度高于冬季;夏季大气中苯系物、挥发性卤代烃浓度分别是冬季的1.1~2.7、1.4~...  相似文献   

6.
研究了乌鲁木齐某含油废水污灌区不同土地类型(林地、葵花地、玉米地、荒地)0~100cm的土壤中正构烷烃的分布特征和来源。结果表明,表层(0~20cm)土壤中正构烷烃质量浓度为4.30~8.43mg/kg,呈现林地玉米地荒地葵花地的特点,与国内外其他地区相比受到中等程度的污染。土壤中正构烷烃含量随深度增加整体呈递减趋势。不同土地类型不同土层中正构烷烃种类相似,但不同深度土壤中不同碳原子数的正构烷烃质量分数差异显著(P0.05)。研究区土壤中正构烷烃来源为混合源,包括化石燃料不完全燃烧和木本植物的释放。  相似文献   

7.
天津市气溶胶折射指数及消光特征   总被引:5,自引:0,他引:5  
根据2005年5月17~23日Grimm气溶胶粒谱分析仪观测结果,考察天津市气溶胶消光特征.利用天津市2000年非采暖季PM10源解析的结果,初步得出天津市气溶胶的折射指数为1.585-0.118i.通过Mie理论计算得出天津市气溶胶散射消光占到总消光的60 0A以上;气溶胶消光主要集中于粒径小于1.00 μm的颗粒物,消光贡献率为80%以上.其中粒径为O.30~0.35 μm的颗粒物的消光贡献率最大,达20.7%.  相似文献   

8.
西安市冬、夏两季PM2.5中碳气溶胶的污染特征分析   总被引:5,自引:0,他引:5  
为研究西安市冬、夏两季大气颗粒物PM2.5中碳组分的污染变化规律,利用TEOM系列RP1400a采样仪于2010年冬季和夏季进行采样,测定了样品中的有机碳(OC)、无机碳(EC)和水溶性有机碳(WSOA)的含量。结果显示,PM2.5中OC和EC的季节平均浓度值冬季较高,分别是夏季的2.62,1.75倍,这表明西安市冬季碳气溶胶污染严重。OC和EC日变化在不同季节均呈现双峰分布特征,这主要是由交通源的排放和不利的气象条件造成的。OC和EC在冬、夏两季都有较强的相关性(R2分别为0.823和0.543),且OC/EC平均值分别为5.36和3.58,均大于2,表明采样各时段有二次有机碳(SOC)生成。  相似文献   

9.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   

10.
浙东沿海城市大气颗粒物污染特征及来源解析研究   总被引:5,自引:0,他引:5  
对2009年夏季浙东沿海地区环境空气质量进行监测,监测大气颗粒物(TSP、PM10、PM2.5、PM1.0)浓度,分析颗粒物污染特征、水溶性离子及无机元素组成,运用化学质量平衡受体模型(CMB模型)对浙东沿海地区大气TSP来源进行解析.结果表明,浙东沿海地区的大气颗粒物主要以细颗粒物为主,颗粒物中主要的水溶性离子为SO2-4、NH+4、Ca2+,土壤尘是该地区大气TSP的主要来源,北仑、乐清和奉化TSP中土壤尘的分担率分别达到55.49%、42.52%、40.70%,各监测点TSP来源具有一定的地域特征.  相似文献   

11.
天津冬季PM2.5与PM10中有机碳、元素碳的污染特征   总被引:2,自引:0,他引:2  
研究了天津冬季PM2.5和PM10中碳成分的污染特征.结果表明,天津冬季PM2.5和PM10的平均质量浓度分别为(124.4±60.9)、(224.6±131.2)μg/m3;总碳(TC)、有机碳(OC)与元素碳(EC)在PM2.5中的平均质量分数比在PM10中分别高出5.0%、3.6%、1.2%;PM2.5中OC、EC的相关系数较高,为0.95,表明OC、EC的来源相对简单,可能主要反应了燃煤和机动车尾气的贡献.OC/EC的平均值在PM2.5和PM10中分别为3.9、4.9.次生有机碳(SOC)在PM2.55和PM10中的平均质量浓度分别为14.9、23.4/μg/m3,分别占OC的48.5%(质量分数,下同)、49.8%,OC/EC较高可能主要与直接排放源有关;PM2.5中的OC1与OC2的比例明显高于PM10,而聚合碳(OPC)的比例又低于PM10,同时PM2.5与PM10中的EC1含量均较高,表明天津冬季燃煤取暖和机动车尾气是重要的污染源.  相似文献   

12.
区域大气环境中PM_(2.5)/PM_(10)空间分布研究   总被引:5,自引:2,他引:3  
提出了一种利用移动监测技术研究区域大气环境中PM2.5/PM10空间分布的方法,并在2004年12月进行了宁波市全市域PM2.5/PM10空间分布的研究.数据显示:相同路径所代表的地区PM2.5和PM10具有很好的相关性,多数路径上PM2.5与PM10数据的相关系数平方在0.95以上,而不同路径上PM2.5与PM10的比值不同.文中给出了宁波市PM2.5/PM10污染的空间分布图,直观地显示出PM2.5/PM10污染的空间分布情况,突出了污染的重点点位和地区.  相似文献   

13.
利用2004-2006年地面气象观测资料和同期环境空气质量自动监测数据,分析了杭州市区大气能见度变化趋势及其与主要污染物的相关性.结果表明,杭州市区能见度的日分布特征为14时最好,8时最差;季节变化特征为夏季>春季>秋季>冬季,全年仅7月能见度超过10 km;SO2、NO2、PM10浓度均随能见度增高而逐渐降低;影响能见度的首要因子为相对湿度和PM2.5,能见度与PM2.5浓度具有较好的相关性.  相似文献   

14.
南昌市大气PM2.5中多环芳烃的来源解析   总被引:1,自引:0,他引:1  
在南昌市布设5个采样点,分别代表工业区、居住区、交通干线区、商业区以及郊区,于2007年7~8月进行大气PM2.5的采样.根据5个采样点测得的数据,通过因子分析法判断南昌市大气PM2.5中多环芳烃的主要来源,再利用多元线性回归法确定各主要来源对多环芳烃的贡献率.结果表明,南昌市多环芳烃的主要来源为车辆排放源、高温加热源、燃煤污染源,对多环芳烃的贡献率分别为37.9%、28.2%、22.0%.  相似文献   

15.
西安南郊采暖期大气颗粒物PM2.5的污染特征分析   总被引:1,自引:1,他引:0  
为研究西安市南郊地区采暖期大气颗粒物PM2.5的污染浓度及水溶性成分,使用颗粒物采样器于2009年1月6日~2009年2月15日进行PM2.5采样.将24 h分为8个阶段,每天3 h定时采样.结果表明,西安市南郊地区采暖期PM2.5明显污染,24 h中PM2.5污染状况最严重的时段为21:00~23:59;PM2.5中NH+4、NO-3和SO2-4是其最主要的水溶性组分,在PM2.5中的平均质量混合比分别为10.225%、13.698%和15.650%,三者在PM2.5中质量混合比最高的时段分别为06:00~08:59、03:00~05:59和18:00~20:59.  相似文献   

16.
隧道实验测定南京市机动车PM10排放因子   总被引:3,自引:0,他引:3  
胡伟  钟秦 《环境工程学报》2009,3(10):1852-1855
选取南京城市隧道进行机动车PM10平均排放因子的测试研究.采用质量平衡模型和多元线性回归方法计算了4种车型PM10的综合排放因子.结果表明:隧道内机动车PM10平均排放因子为0.347±0.100 g/(km·辆);大型车的PM10排放因子远高于其他车型的排放因子,其次是中型车和摩托车,小型车最小,其综合排放因子分别为1.440 g/(km·辆)、0.850 g/(km·辆)、0.790 g/(km·辆)和0.320 g/(km·辆);在车速相似的情况下,本隧道实验所测机动车的PM10排放因子与国内隧道实验结果相仿,却远大于国外隧道实验结果.  相似文献   

17.
提出了一种利用移动监测技术研究区域大气环境中PM2.5/PM10空间分布的方法,并在2004年12月进行了宁波市全市域PM2.5/PM10空间分布的研究。数据显示:相同路径所代表的地区PM2.5和PM10具有很好的相关性,多数路径上PM2.5与PM10数据的相关系数平方在0.95以上,而不同路径上PM2.5与PM10的比值不同。文中给出了宁波市PM2.5/PM10污染的空间分布图,直观地显示出PM2.5/PM10污染的空间分布情况,突出了污染的重点点位和地区。  相似文献   

18.
Viana M  Querol X  Alastuey A  Gil JI  Menéndez M 《Chemosphere》2006,65(11):2411-2418
The effectiveness of combining principal component analysis (PCA) with multi-linear regression (MLRA) and wind direction data was demonstrated in this study. PM data from three grain-size fractions from a highly industrialised area in Northern Spain were analysed. Seven independent PM sources were identified by PCA: steel (Pb, Zn, Cd, Mn) and pigment (Cr, Mo, Ni) manufacture, road dust (Fe, Ba, Cd), traffic exhaust (P, OC + EC), regional-scale transport (, , V), crustal contributions (Al2O3, Sr, K) and sea spray (Na, Cl). The spatial distribution of the sources was obtained by coupling PCA with wind direction data, which helped identify regional drainage flows as the main source of crustal material. The same analysis showed that the contribution of motorway traffic to PM10 levels is 4-5 microg m-3 higher than that of local traffic. The coupling of PCA-MLRA with wind direction data proved thus to be useful in extracting further information on source contributions and locations. Correct identification and characterisation of PM sources is essential for the design and application of effective abatement strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号