首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In a pot experiment the effects of nitrilotriacetate (NTA) and citric acid applications on Cd extractibility from soil as well as on its uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Plants were grown in a sandy soil with added CdS at four levels ranging from 50 to 200 mg Cd kg(-1) soil. After 30 days of growth, pots were amended with NTA or citric acid at 10 and 20 mmol kg(-1). Control pots were not treated with chelates. Harvest of plants was performed immediately before and one week after chelate addition. Soil water-, NH(4)NO(3)- and EDTA-extractable Cd fractions increased constantly with both increasing soil metal application and chelate concentration. Shoot dry weights did not suffer significant reductions with increasing Cd addition to the soil except for both NTA treatments in which at 200 mg Cd kg(-1) a 30% decrease in dry matter was observed. Generally, following NTA and citric acid amendments, Cd concentration in shoots increased with soil Cd level. However, due to Cd toxicity, at the highest metal application rate both NTA treatments lowered Cd concentration in the above-ground parts. Compared to the control, at 10 mmol kg(-1) citric acid did not change Cd concentration in shoots, whereas NTA-treated plants showed an about 2-fold increase. The addition of chelates at 20 mmol kg(-1) further enhanced Cd concentration in shoots up to 718 and 560 microg g(-1) dry weight in the NTA and citrate treatments, respectively.  相似文献   

2.
Brassica juncea, or Indian mustard, was grown in soil artificially contaminated with either a soluble salt, CdCl(2), at 186mg Cdkg(-1), or alternately an insoluble, basic salt, CdCO(3), at 90mg Cdkg(-1). These experiments study the range of Cd uptake by Indian mustard from conditions of very high Cd concentration in a soluble form to the other extreme with an insoluble Cd salt. After plants were established, four different chelating agents were applied. Chelating agents increased plant uptake of Cd from the CdCl(2) soil but did not significantly increase plant uptake of Cd from the CdCO(3) contaminated soil. Addition of ethylenediaminetetraacetic acid (EDTA) increased the plant concentration of Cd by almost 10-fold in soils contaminated with CdCl(2), with a concentration of 1283mg Cdkg(-1) in the dried EDTA-treated plants over a concentration of 131mg Cdkg(-1) in plants without added chelate. However, EDTA increased the aqueous solubility of Cd by 36 times over the soil matrix without added chelator, and thereby, increased the possibility of leaching. Other chelators used in both experiments were ethylenebis(oxyethylenenitrilo)tetraacetic acid, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, and diethylenetriaminepentaacetic acid (DTPA) increasing Cd in plants to 1240, 962, and 437mg Cdkg(-1), respectively. The other chelating agents increased the solubility of Cd in the leachate but not to the extent of EDTA. Comparing all chelating agents studied, DTPA increased plant uptake in terms of Cd in dried plant concentration most relative to the solubility of complexed Cd in runoff water.  相似文献   

3.
Conder JM  Lanno RP 《Chemosphere》2000,41(10):1659-1668
We evaluated weak-electrolyte (0.1 M Ca(NO3)2) soil extractions and ion-exchange membranes coated with a metal chelator as measures of Cd, Pb, and Zn bioavailability in spiked artificial soil by comparing their metal availability estimates to acute lethal toxicity in the earthworm Eisenia fetida. Ca(NO3)2 extractions were precisely related to toxicity in all toxicity tests, and enabled the development of time-independent LC50S (incipient lethal-levels, ILLs) calculated using exposure levels based on extraction data. ILLs with 95% CIs for the Cd, Pb, and Zn toxicity tests were 9.8 (9.4-10.3), 1.16 (1.11-1.22), and 6.33 (6.18-6.49) Ca(NO3)2-extractable mmol metal/kg soil, respectively. Mixture toxicity of Cd, Pb, and Zn, assessed using the toxic unit (TU) approach, was 1.35 TU, suggesting additivity. Chelating ion-exchange membrane uptake was variable, and not well related to toxicity. Weak-electrolyte extractions show promise as precise, inexpensive surrogate measures of Cd, Pb, and Zn bioavailability in soil.  相似文献   

4.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

5.
Phytoextraction of lead from firing range soil by Vetiver grass   总被引:3,自引:0,他引:3  
Phytoextraction techniques utilizing a sterile strain of Vetiver grass (Vetiveria zizanoides) along with soil amendments were evaluated for removing lead and other elements such as Zn, Cu, and Fe from the soil of a 50-year old active firing range at the Savannah River Site (SRS). Lead-contaminated soil (300-4500 ppm/kg) was collected, dried, placed in pots, fertilized, and used as a medium for growing transplanted Vetiver grass plants in a greenhouse. The uptake of metals by the plants was evaluated in response to various fertilization and pre-harvest treatment schemes. Baseline metal concentrations in the soil of all pots were measured prior to planting and when the plants were harvested. Plants grew better when fertilized with Osmocote fertilizer in comparison to plants fertilized with 10-10-10 (NPK) fertilizer. Application of a chelating agent, EDTA, one week prior to harvest significantly increased the amount of lead that was phytoextracted. Lead concentrations of up to 1390-1450 ppm/kg in tissue samples were detected. Maximum Pb levels were observed in root tissues. The addition of non-lethal doses of a slow-release herbicide in combination with EDTA did not appear to further enhance phytoextraction or the translocation of Pb into shoots. The study indicated that the use of Vetiver grass coupled with the use of chelating soil amendments has considerable potential for use as a remedial strategy for lead-contaminated soils such as those associated with firing ranges.  相似文献   

6.
Bi YL  Li XL  Christie P 《Chemosphere》2003,50(6):831-837
In a pot experiment, red clover (Trifolium pratense) was grown in sterilized Zn-amended low available P soil (0, 50 or 400 mg Zn kg(-1)) with or without 100 mg kg(-1) added P and with or without inoculation with the arbuscular mycorrhizal (AM) fungus G. mosseae. When the plants were harvested after 40 days, AM colonization of the roots was still at an early stage, with only 14-38% of total root length colonized on average. AM colonization was highest in low-P soil, and was lowest in soil amended with 400 mg Zn kg(-1). Shoot yields were highest in AM plants with added P, but root yields were unaffected by AM inoculation. Shoot and root yields were higher with 100 mg added P kg(-1) soil, but lower with 400 mg Zn kg(-1) than 50 mg Zn kg(-1) or controls unamended with Zn. Shoot and root P concentrations were seldom higher in AM plants, but shoot P offtakes were higher in AM plants with added P. Concentrations of Zn and Cu were much higher in the roots than in the shoots. Shoot and root Zn and shoot Cu were lower, but root Cu was higher, in AM plants. Soil residual pH after plant growth was higher in AM treatments, and residual total Zn was also higher, indicating lower Zn uptake by AM plants. Soil solution pH was higher in AM treatments, and soil solution Zn was lower in the presence of mycorrhiza. The results are discussed in terms of AM protection of the plants against excessive shoot Zn uptake.  相似文献   

7.
The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg(-1) soil) and Cd (0, 10 and 25 mg kg(-1) soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids.  相似文献   

8.
Luo C  Shen Z  Li X  Baker AJ 《Chemosphere》2006,63(10):1773-1784
Chemically enhanced phytoextraction is achieved by the application of chelates to soils. Using pot experiments, the effect of the combined application of EDTA and EDDS on the uptake of Cu, Pb, Zn and Cd by Zea mays L. was studied. Among the tested application ratios of 1:1, 1:2, and 2:1 (EDTA/EDDS), 2:1 of EDTA:EDDS was the most efficient ratio for increasing the concentrations of Cu, Pb, Zn and Cd in the shoots. The combined application of 3.33 mmol kg(-1) soil of EDTA+1.67 mmol kg(-1) soil of EDDS produced 650 mg kg(-1) of Pb in the shoots, which was 2.4 and 5.9 times the concentration of Pb in the shoots treated with 5 mmol kg(-1) of EDTA and EDDS alone, respectively. The total phytoextraction of Pb reached 1710 microg kg(-1) soil, which was 2.1 and 6.1 times the total Pb from 5 mmol kg(-1) EDTA and EDDS alone, respectively. The combined application of EDTA and EDDS also significantly increased the translocation of Pb from the roots to the shoots. The mechanism of enhancing the phytoextraction of Pb by the combined application of EDTA+EDDS did not involve a change in the pH of the soil. The increase in the phytoextraction of Pb by the shoots of Z. mays L. was more pronounced than the increase of Pb in the soil solution with the combined application of EDTA and EDDS. It was thought that the major role of EDDS might be to increase the uptake and translocation of Pb from the roots to the shoots of plants.  相似文献   

9.
Potentials and drawbacks of chelate-enhanced phytoremediation of soils.   总被引:28,自引:0,他引:28  
Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysimeter studies were conducted to study the phytoremedation potential of EDGA and citric acid and to evaluate its effects on microbial activity and leaching of Cd, Zn Cu and Pb. Grass, lupine and yellow mustard were grown on a moderately polluted acid (pH 4.5) sandy soil that contained 2 mg kg(-1) Cd and 200 mg kg(-1) Zn. Citric acid appeared to be degraded microbially within a few days after addition which limited its potential for long-lasting remediation studies. EDGA enhanced metal solubility but plant uptake did not increase accordingly. The metal shoot:root ratio increased upon addition of EDGA but it also reduced the net shoot and root biomass production of both lupine and yellow mustard. Bacterial biomass was higher in both the citric and EDGA treated pots but bacterial activity remained unaffected. The number of microbivorous nematodes was greatly reduced upon addition of EDGA which was most likely related to the reduced biomass production and, to a smaller extent, to the changes in the composition of the available food. Furthermore, EDGA enhanced metal leaching in the lysimeter study which could lead to groundwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation methods, therefore, seems necessary.  相似文献   

10.
The distribution of Cd, Cu, Pb and Zn between a contaminated soil and the tree species Paulownia tomentosa was investigated in a pilot-scale assisted phytoremediation study. The influence of the addition of EDTA, tartrate and glutamate at 1, 5 and 10mM concentrations on metal accumulation by the plant and on metal mobilization in soil was evaluated. Root/shoot metal concentration ratios were in the range of 3-5 for Zn, 7-17 for Cu, 9-18 for Cd and 11-39 for Pb, depending on the type and concentration of complexing agent. A significant enhancement of metal uptake in response to complexing agent application was mainly obtained in roots for Pb (i.e. 359 mg kg(-1) for EDTA 10mM and 128 mg kg(-1) for the control), Cu (i.e. 594 mg kg(-1) for glutamate 10mM and 146 mg kg(-1) for the control) and, with the exception of glutamate, also for Zn (i.e. 670 mg kg(-1) for tartrate 10mM and 237 mg kg(-1) for the control). Despite its higher metal mobilization capacity, EDTA produced a metal accumulation in plants quite similar to those obtained with tartrate and glutamate. Consequently the concentration gradient between soil pore water and plant tissues does not seem to be the predominant mechanism for metal accumulation in Paulownia tomentosa and a role of the plant should be invoked in the selection of the chemical species taken up. Metal bioavailability in soil at the end of the experiment was higher in the trials treated with EDTA than in those treated with tartrate and glutamate, the latter not being significantly different from the control. These findings indicated the persistence of a leaching risk associated to the use of this chelator, while an increase of the environmental impact is not expected when glutamate and tartrate are applied.  相似文献   

11.
Lai HY  Chen ZS 《Chemosphere》2004,55(3):421-430
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from contaminated soils. Vetiver grass (Vetiver zizanioides) has strong and long root tissues and is a potential phytostabilization plant since it can tolerate and grow well in soils contaminated with multiple heavy metals. Soil was moderately artificially contaminated by cadmium (20 mg/kg), zinc (500 mg/kg), and lead (1000 mg/kg) in pot experiments. Three concentrations of Na2-EDTA solution (0, 5, and 10 mmol/kg soil) were added to the contaminated soils to study the influence of EDTA solution on phytoextraction by rainbow pink or phytostabilization by vetiver grass. The results showed that the concentrations of Cd, Zn, and Pb in a soil solution of rainbow pink significantly increased following the addition of EDTA (p < 0.05). The concentrations of Cd and Pb in the shoots of rainbow pink also significantly increased after EDTA solution was applied (p < 0.05), but the increase for Zn was insignificant. EDTA treatment significantly increased the total uptake of Pb in the shoot, over that obtained with the control treatment (p < 0.001), but it did not significantly increase the total uptake of Cd and Zn. The concentrations of Zn and Pb in the shoots of rainbow pink are significantly correlated with those in the soil solution, but no relationship exists with concentrations in vetiver grass. The toxicity of highly contaminating metals did not affect the growth of vetiver grass, which was found to grow very well in this study. Results of this study indicate that rainbow pink can be considered to be a potential phytoextraction plant for removing Cd or Zn from metal-contaminated soils, and that vetiver grass can be regarded as a potential phytostabilization plant that can be grown in a site contaminated with multiple heavy metals.  相似文献   

12.
The documeneed adverse health effects of soil Cd and Pb have led to public concern over soil contamination with metals. A 4-year field experiment was conducted to study the transfer of Cd, Pb, and Zn from soil contaminated by smelter flue-dust to crop plants grown in a rotation. The soil was amended with Pb?Zn smelter flue-dust (2-66.8 kg per 10 m(2) plot) to simulate the long-term effect that the smelting of non-ferrous metal ore has on arable soils. The treated soil became strongly contaminated with metals (Cd 3.2-106 mg/kg, Pb 146-3452 mg/kg, Zn 465-11 375 mg/kg). Concentrations of Cd, Pb, and Zn in barley grain, barley straw meadow bluegrass, red clover, and potatoes were generally low. The highest metal concentrations were found in potato tubers (intact), meadow bluegrass, and barley straw. The observed reduction in crop yield was probably the result of possible nutrient imbalances rather than of metal (Zn, Cu) phytotoxicities. Zn and Cd uptake by the plants can be described by the saturation (plateau) model (y = ax(b), b < 1). The relationship between Pb in the soil and plants was linear with an extremely low slope (0.0001-0.0003). No excessive dietary intake of Cd is expected when Cd concentrations in barley grain and potato tubers grown on the contaminated soil are not higher than 0.6 and 1.0 mg/kg, respectively. Based on the risk analysis and taking into account the saturation model of the soil-plant metal relationship, it was concluded that, under the conditions of this experiment (neutral soil pH), soil with Cd concentrations of up to 30 mg/kg is still safe for production of these crop plants.  相似文献   

13.
The effects of nitrilotriacetate (NTA) and citric acid applications on metal extractability from a multiply metal-contaminated soil, as well as on their uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Desorption of metals from the soil increased with chelate concentration, NTA being more effective than citric acid in solubilising the metals. Plants were grown in a sandy soil collected from a contaminated field site and polluted by Cd, Cr, Cu, Pb and Zn. After 43 days of plant growth, pots were amended with NTA or citric acid at 5 mmol kg-1 soil. Control pots were not treated with any chelate. Harvest of plants was performed 1 week after chelate addition. Soil water-, NH4NO3- and DTPA-extractable Cd, Cu, Pb and Zn fractions were enhanced only in the presence of NTA. In comparison to unamended plants, Indian mustard shoot dry weights suffered significant reductions following NTA application. NTA treatment increased shoot metal concentrations by a factor of 2-3, whereas citric acid did not induce any difference compared to the control. Chromium was detected in the above-ground tissues only after NTA amendment. Due to differences in dry matter yield, a significant enhancement of metal uptake was observed in NTA-treated plants for Cu and Zn.  相似文献   

14.
Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg(-1)) and Zn (2602 mg kg(-1)), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg(-1)) and Pb (190 mg kg(-1)). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl2 or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg(-1) soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.  相似文献   

15.
Liang Y  Wong JW  Wei L 《Chemosphere》2005,58(4):475-483
Pot experiments were performed to study the alleviative effects of exogenous silicon (Si) on cadmium (Cd) phytotoxicity in maize grown in an acid soil experimentally contaminated with Cd. Five treatments were investigated in the first trial consisting of a control (neither Cd nor Si added), Cd added at 20 or 40 mg kg(-1) Cd without or with Si added at 400 mg kg(-1) Si. A following-up trial was conducted with almost the same treatments as in the first trial except that Si was incorporated at 50 mg kg(-1) Si. The results showed that Cd treatment significantly decreased shoot and root dry weight, while addition of Si at both levels significantly enhanced biomass. Addition of Si at 400 mg kg(-1) Si significantly increased soil pH but decreased soil Cd availability, thus reducing Cd concentration in the shoots and roots and total Cd in the shoots. Moreover, more Cd was found to be in the form of specific adsorbed or Fe-Mn oxides-bound fraction in the Si-amended soil. In contrast, soil pH, available Cd and Cd forms were unaffected by addition of Si at 50 mg kg(-1) Si, but shoot Cd concentration in the Si-amended Cd treatments significantly decreased at both Cd levels used compared to the non-Si-amended Cd treatments. Total Cd in the shoots and roots was considerably and significantly higher in the Si-amended Cd treatments than in the non-Si-amended Cd treatments. The xylem sap significantly increased but Cd concentration in the xylem sap significantly decreased in the Si-amended Cd treatments compared with the non-Si-amended Cd treatments irrespective of Cd and Si levels used. The results suggest that Si-enhanced tolerance to Cd can be attributed not only to Cd immobilization caused by silicate-induced pH rise in the soils but also to Si-mediated detoxification of Cd in the plants.  相似文献   

16.
Assessment of the phytoextraction potential of high biomass crop plants   总被引:4,自引:0,他引:4  
A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg(-1)), Zn (10 916 mg kg(-1)), and Cd (242 mg kg(-1)), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot(-1). We concluded that the phytoextraction performance of cultivars varies depending on the screening method used.  相似文献   

17.
Turgut C  Pepe MK  Cutright TJ 《Chemosphere》2005,58(8):1087-1095
The use of two EDTA concentrations for enhancing the bioavailability of cadmium, chromium, and nickel in three natural soils (Ohio, New Mexico and Colombia) was investigated. The resulting uptake, translocation and selectivity with Helianthus annuus after mobilization were also examined. In general, plants grown in the sandy-loam Ohio soil had a higher uptake that resulted in a selectivity and total metal content of Cd>Cr>Ni and 0.73 mg and Cr>Cd>Ni and 0.32 mg for 0.1 and 0.3 g kg-1 EDTA, respectively. With the silty-loam New Mexico soil, although the total metal uptake was not statistically different the EDTA level did alter the selectivity; Cd>Cr>Ni (0.1 g kg-1 EDTA) and Cd>Cr>Ni (0.3 g kg-1 EDTA). Conversely, with the Colombian (sandy clay loam) soil increasing the EDTA level resulted in a higher total metal uptake (0.62 mg) than the 0.1 g kg-1 (0.59 mg) treatment. For all three soils, the translocation of Cd was limited. Evaluating the mobile metal fraction with and without EDTA determined that the chelator was capable of overcoming mass transfer limitations associated with the expandable clay fraction in the soils. Root wash results and root biomass concentrations indicated that Cd sorption was occurring. Therefore limited Cd translocation was attributed to insufficient phytochelatin levels.  相似文献   

18.
Liao YC  Chien SW  Wang MC  Shen Y  Hung PL  Das B 《Chemosphere》2006,65(2):343-351
The effect of transpiration (high and low) on Pb uptake by leaf lettuce and on water soluble low molecular weight organic acids (LMWOAs) in rhizosphere has been studied. After two weeks of growth the plants were cultured in greenhouse for more four weeks and two days. Pb(NO(3))(2) solutions of different concentrations (100, 200, and 300 mg l(-1) of Pb) were then added to the quartz sand pots of different plants and studies were initiated. Blank experiments (without treating the quartz sand pots with Pb(NO(3))(2) solutions) were also run in parallel. No significant differences in the growth of the plants with the concentrations of added Pb(NO(3))(2) solutions were observed by both low and high transpirations at the end of the 0, 3rd, and 10th days of studies. The total evaporation of the volatiles during 10 days did not depend on the concentration of Pb(2+) but with high transpiration the rate of evaporation was significantly higher than with low transpiration. Uptake of Pb by shoots and roots of the plants was found to be proportional to the concentration of various Pb(NO(3))(2) solutions added and more accumulation was observed in roots than in shoots at the end of 3rd and 10th days. High transpiration created more Pb uptake than low transpiration did. One volatile acid, propionic acid and nine non-volatile acids, lactic, glycolic, oxalic, succinic, fumaric, oxalacetic, D-tartaric, trans-aconitic, and citric acids in rhizosphere quartz sands were identified and quantified by gas chromatography (GC) analysis. D-Tartaric and citric acids were major among the non-volatile acids. The amount of LMWOAs in rhizosphere quartz sands increased with the higher amount of Pb uptake and also with the duration of studies. The total quantities of the LMWOAs in the rhizosphere quartz sands were significantly higher under high transpiration with 300 mg l(-1) Pb solution addition at the end of 10th day. The present study shows prominent correlation between transpiration and uptake of heavy metal and interesting correlation between Pb contaminated level and quantity of water soluble LMWOAs in rhizosphere quartz sands. The latter thus deserves of further studies.  相似文献   

19.
The possibility to clean heavy metal contaminated soils with hyperaccumulator plants has shown great potential. One of the most recently studied species used in phytoremediation applications are sunflowers. In this study, two cultivars of Helianthus annuus were used in conjunction with ethylene diamine tetracetic acid (EDTA) and citric acid (CA) as chelators. Two different concentrations of the chelators were studied for enhancing the uptake and translocation of Cd, Cr, and Ni from a silty-clay loam soil. When 1.0 g/kg CA was used, the highest total metal uptake was only 0.65 mg. Increasing the CA concentration posed a severe phytotoxicity to both cultivars as evidenced by stunted growth and diminished uptake rates. Decreasing the CA concentration to 0.1 and 0.3 g/kg yielded results that were not statistically different from the control. EDTA at a concentration of 0.1 g/kg yielded the best results for both cultivars achieving a total metal uptake of approximately 0.73 mg compared to approximately 0.40 mg when EDTA was present at 0.3 g/kg.  相似文献   

20.
Grain Cd concentrations were determined in wheat (Triticum aestivum L.) grown in 1999, 2001 and 2003, at six sludge cake field experiments. Three of these sites also had comparisons with Cd availability from metal amended liquid sludge and metal salts. Grain Cd concentrations in all years and at all sites were significantly linearly correlated with NH4NO3 extractable Cd and soil total Cd (P<0.001). Soil extractability was greater in the liquid sludge and metal salt experiments than in the cake experiments, as were grain Cd concentrations. Across all the sites, NH4NO3 extractable soil Cd was no better at predicting grain Cd than soil total Cd. Stepwise multiple linear regression analysis showed that soil total Cd, pH and organic carbon were the only significant (P<0.001) variables influencing wheat grain Cd concentrations, explaining 78% of the variance across all field experiments (1408 plots). This regression predicted that the current UK soil total Cd limit of 3 mg kg(-1) was not sufficiently protective against producing grain above the European Union (EU) grain Cd Maximum Permissible Concentration (MPC) of 0.235 mg Cd kg(-1) dry weight, unless the soil pH was > 6.8. Our predictions show that grain would be below the MPC with > 95% confidence with the proposed new EU draft regulations permitting maximum total Cd concentrations in soils receiving sludge of 0.5 mg kg(-1) for soils of pH 5-6, 1 mg kg(-1) for soils of pH 6-7, and 1.5 mg kg(-1) for soils of pH > or = 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号