首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7-cm-long columns of intact sediment or repacked sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of columns to examine the effect of cell morphology and cell surface properties on bacterial transport. The effects of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also investigated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide-coated columns, but only in the suboxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide-coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect appears to be profound for weakly and strongly charged hydrophilic bacteria and may contribute to differences in observations between laboratory experiments versus field-scale investigations particularly if the groundwater pH remains subneutral and Fe oxyhydroxide phases exist. These observation validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.  相似文献   

2.
Humic colloid-borne migration of uranium in sand columns   总被引:3,自引:0,他引:3  
Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm(-3)). U migration was studied under an Ar/1% CO2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers.  相似文献   

3.
Uncertainties in projected ultraviolet (UV) radiation may lead to future increases in UV irradiation of freshwater lakes. Because dissolved organic carbon (DOC) is the main binding phase for mercury (Hg) in freshwater lakes, an increase in DOC photo-oxidation may affect Hg speciation and bioavailability. We quantified the effect of DOC concentration on the rate of abiotic DOC photo-oxidation for five lakes (DOC=3.27-12.3 mg L(-1)) in Kejimkujik National Park, Canada. Samples were irradiated with UV-A or UV-B radiation over a 72-h period. UV-B radiation was found to be 2.36 times more efficient at photo-oxidizing DOC than UV-A, with energy-normalized rates of dissolved inorganic carbon (DIC) production ranging from 3.8×10(-5) to 1.1×10(-4) mg L(-1)J(-1) for UV-A, and from 6.0×10(-5) to 3.1×10(-4) mg L(-1)J(-1) for UV-B. Energy normalized rates of DIC production were positively correlated with DOC concentrations. Diffuse integrated attenuation coefficients were quantified in situ (UV-A K(d)=0.056-0.180 J cm(-1); UV-B K(d)=0.015-0.165 J cm(-1)) and a quantitative depth-integrated model for yearly DIC photo-production in each lake was developed. The model predicts that, UV-A produces between 3.2 and 100 times more DIC (1521-2851 mg m(-2) year(-1)) than UV-B radiation (29.17-746.7 mg m(-2) year(-1)). Future increases in UV radiation may increase DIC production and increase Hg bioavailability in low DOC lakes to a greater extent than in high DOC lakes.  相似文献   

4.
The aim of this study was to characterize the labile part of dissolved organic carbon (DOC) present in groundwater by identification of natural organic carbon substrates and to assess their microbial utilization during aeration of the groundwater. The studied chlorophenol (CP) contaminated groundwater contained 60-2650 micromoll(-1) of DOC of which up to 98.0% were CPs; 1.7% were low-molecular weight organic acids and 0.2% were dissolved free amino acids. Traces of following natural organic carbon substrates were identified: L-alanine, L-isoleucine, L-leucine, L-serine, L-threonine, L-tyrosine, L-valine, L-aspartic, acetic, citric, formic, lactic, malic and oxalic acid. Dissolved oxygen concentration inside the CP-plume was lower (mean 25 micromoll(-1)) than outside of the plume (mean 102 micromoll(-1)). Over a monitoring period of four years the concentrations of CPs, Fe(II) and NH4+ were higher inside than outside of the CP-plume. Oxygen availability within the CP-plume limits in situ biological oxidation of CPs, DOC, NH4+ and Fe(II). The microbial enzymatic hydrolysis rates of 4-methylumbelliferyl and 7-amino-4-methylcoumarin-linked substrates varied from 0.01 to 52 micromoll(-1)h(-1) and was slightly higher inside than outside the plume. Microbial uptake rates of 14C-acetate, 14C-glucose and 14C-leucine were on average 28, 4 and 4 pmoll(-1)h(-1) outside and 17, 25 and 8 pmoll(-1)h(-1) inside the plume, respectively. The indigenous microorganisms were shown able of hydrolysis of dissolved organic matter, uptake and utilization of natural organic carbon substrates. Therefore, the labile part of DOC serves as a pool of secondary substrates beside the CP-contaminants in the groundwater and possibly help in sustaining the growth of CP-degrading bacteria.  相似文献   

5.
The influence of black carbon (BC) on the sorption of 17 native polychlorinated-p-dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was studied in five soil samples from a sawmill site where wood used to be impregnated with chlorophenol preservatives. The presence of BC caused measured total organic carbon (TOC)-water distribution ratios (K(TOC)) to be a median factor of 51 (interquartile range 18-68, n=85) higher than modeled amorphous organic carbon (AOC)-water distribution ratios (K(AOC)). K(TOC) was a factor of 73+/-27 above K(AOC) for PCDFs (n=10) and a factor of 20+/-13 (n=7) for PCDDs. The reason for this difference is probably that attaining a planar configuration after sorption to BC is less thermodynamically favorable for PCDDs than for PCDFs. BC-water distribution ratios were calculated from K(TOC), K(AOC) and BC contents, and ranged from 10(9.9) (2,3,7,8-Tetra-CDD) to 10(11.5) l kg(-1) (Octa-CDF). More than 90% of the PCDD/Fs in the soil was calculated to be BC-sorbed. Dissolved organic carbon (DOC)-water distribution ratios were measured to be in the same order of magnitude as K(AOC). This study shows that strong sorption to BC should be included when assessing ecotoxicological risk or modeling transport to groundwater of PCDD/Fs in soil.  相似文献   

6.
Sediments contaminated by various sources of mercury (Hg) were studied at 8 sites in Sweden covering wide ranges of climate, salinity, and sediment types. At all sites, biota (plankton, sediment living organisms, and fish) showed enhanced concentrations of Hg relative to corresponding organisms at nearby reference sites. The key process determining the risk at these sites is the net transformation of inorganic Hg to the highly toxic and bioavailable methylmercury (MeHg). Accordingly, Hg concentrations in Perca fluviatilis were more strongly correlated to MeHg (p < 0.05) than to inorganic Hg concentrations in the sediments. At all sites, except one, concentrations of inorganic Hg (2-55 microg g(-1)) in sediments were significantly, positively correlated to the concentration of MeHg (4-90 ng g(-1)). The MeHg/Hg ratio (which is assumed to reflect the net production of MeHg normalized to the Hg concentration) varied widely among sites. The highest MeHg/Hg ratios were encountered in loose-fiber sediments situated in southern freshwaters, and the lowest ratios were found in brackish-water sediments and firm, minerogenic sediments at the northernmost freshwater site. This pattern may be explained by an increased MeHg production by methylating bacteria with increasing temperature, availability of energy-rich organic matter (which is correlated with primary production), and availability of neutral Hg sulfides in the sediment pore waters. These factors therefore need to be considered when the risk associated with Hg-contaminated sediments is assessed.  相似文献   

7.
Xu N  Ni J  Sun W  Borthwick AG 《Chemosphere》2007,69(9):1419-1427
Although the sorption mechanism of hydrophobic organic pollutants on soils or sediments has been widely studied, the effects of coexisting heavy metals are seldom reported, especially the role of dissolved organic carbon (DOC) in sorption interactions involving heavy metals. This paper investigates the sorption interactions of phthalate esters (diethyl phthalate, DEP, and di-n-butyl phthalate, DnBP) and copper on Yellow River sediment in the presence of DOC. The results indicate that the sorption hardly varies for DEP but increases up to 20% for DnBP as the copper concentration increases in a water-sediment system with extremely low concentration of DOC. The copper-induced sorption of DnBP could be due to its complexation with copper, as well as its hydrophobicity. In a water-sediment system with the addition of 6.34 mg l(-1) of commercial humic acid (HA), the sorption of DEP is decreased by up to 37%, and that of DnBP is enhanced by up to 41%, as copper is gradually added. This finding is also consistent with the results for a river water-sediment system containing 8.1 mg l(-1) natural DOC. The copper-influenced sorption of DEP and DnBP are found to be due to the binding of copper to DOC that leads to the configuration change of DOC and thus to its enhanced sorption to sediment. By using polarograph and fluorescence spectrograph techniques, the complexation competition among coexisting phthalates, copper and DOC is examined. The resulting data confirm the significant role of DOC in sorption interactions.  相似文献   

8.
Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.  相似文献   

9.
Dinitrotoluenes (DNTs) are widely used in the manufacturing of explosives and propellants hence causing contamination of several terrestrial and aquatic environments. The present study describes biotransformation of 2,4-DNT and 2,6-DNT in marine sediment sampled from a shipwreck site near Halifax Harbour. Incubation of either 2,4-DNT or 2,6-DNT in anaerobic sediment slurries (10% w/v) at 10 degrees C led to the reduction of both DNTs to their corresponding diaminotoluene (2,4-DAT and 2,6-DAT) via the intermediary formation of their monoamine derivatives (ANTs). The production of diaminotoluene was enhanced in the presence of lactate for both DNT isomers. Using [(14)C]-2,4-DNT less than 1% mineralization was observed as determined by liberated (14)CO(2). Sorption of DNTs, ANTs, and DATs was thus investigated to learn of their fate in marine sediments. Under anaerobic conditions, sorption followed the order: DNTs (K(d)=8.3-11.7lkg(-1))>ANTs (K(d)=4.5-7.0lkg(-1))>DATs (K(d)=3.8-4.5lkg(-1)). Incubation of 2,4-DAT in aerobic sediment led to rapid disappearance from the aqueous phase. LC/MS analysis of the aqueous phase and the acetone sediment extract showed the formation of azo- and hydrazo-dimers and trimers, as well as unidentified polymers. Experiments with radiolabelled 2,4-DAT showed a mass balance distributed as follows: 22% in the aqueous phase, 24% in acetone extracts, and 50% irreversibly bound to sediment. We concluded that DNT in anoxic marine sediment can undergo in situ natural attenuation by reduction to DAT followed by oxidative coupling to hydrazo-oligomers or irreversible binding to sediment.  相似文献   

10.
Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5mg L(-1). These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg.  相似文献   

11.
A survey of groundwater and stream water quality was undertaken in a stock farming area where livestock wastewater infiltrates into sandy unsaturated zones and saturated bedrock aquifers containing fractures. To determine the degree of contamination and track the effect of livestock wastewater on groundwater and stream water quality, the population of indicator bacteria (total coliforms, fecal coliforms, fecal streptococci, Staphylococcus spp., and sulfite-reducing clostridia) together with relevant physicochemical parameters were monitored along the wastewater flow-pathways over a 19-month period. The stream water was severely contaminated with livestock wastewater. Nearly all physicochemical and bacteriological parameters in the stream water were much greater than those in the groundwater. Nitrate-N concentrations ranged from 10.0 to 20.0 mg l(-1) in boreholes located downstream (site C) from the livestock waste disposal site, while those in the background borehole (W2) were below 1.0 mg l(-1). Densities of indicator bacteria in boreholes at site C were two or three orders of magnitude higher than those in W2 borehole. In boreholes located downstream from the livestock waste disposal site, the concentration of ammonium-N, nitrate-N, and pollution indicator bacteria increased as groundwater level rose due to infiltration of rainwater. In W2 borehole, however, physicochemical parameters and the number of pollution indicator bacteria had no correlation with the groundwater level. Collectively, these results suggest that the deep aquifers were heavily contaminated with infiltrated livestock wastewater, which consequently must be adequately treated to minimize groundwater pollution.  相似文献   

12.
Untreated industrial and domestic wastewater from Hanoi city is discharged into rivers that supply water for various agricultural and aqua-cultural food production systems. The aim of this study was to assess the content, distribution and fate of 33 elements in the sediment and pore water of the main wastewater receiving rivers. The sediment was polluted with potentially toxic elements (PTEs) with maximum concentrations of 73 As, 427 Cd, 281 Cr, 240 Cu, 218 Ni, 363 Pb, 12.5 Sb and 1240 Zn mg kg(-1) d.w. Observed distribution coefficients (log(10) K(d,obs)) were calculated as the ratio between sediment (mg kg(-1) d.w.) and pore water (mg L(-1)) concentrations. Maxima log(10) K(d,obs) were >4.26 Cd, >6.60 Cu, 4.78 Ni, 7.01 Pb and 6.62 Zn. The high values show a strong PTE retention and indicate the importance of both sorption and precipitation as retention mechanisms. Sulphide precipitation was a likely mechanism due to highly reduced conditions.  相似文献   

13.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (<2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.  相似文献   

14.
Murakami M  Nakajima F  Furumai H 《Chemosphere》2008,70(11):2099-2109
Infiltration facilities are designed for both the retention of non-point pollutants and the replenishment of groundwater in urban areas. In this study, sorption tests were conducted to evaluate the speciation of heavy metals and their behaviour in infiltration facilities receiving urban road runoff containing high DOC concentrations and stable heavy metal organic complexes. Road dust and three soakaway sediments were collected from heavy traffic areas and a residential area with an infiltration-type sewerage system in Tokyo, Japan. Sequential multiple batch tests were conducted by adding prepared road dust leachate (artificial road runoff) or deionised water to soakaway sediment to obtain soakaway sediment leachate (artificial percolating water from soakaway sediment), which mimicked the sorption by sediments in soakaways receiving urban road runoff. Heavy metal speciation was assessed by means of a combination of anion-exchange resin measurements and MINTEQA2 model calculations, and further validated by chelating resin measurements. In road dust leachates and soakaway sediment leachates, Cu predominantly existed as organic complexes and carbonates, whereas most Mn, Zn and Cd were found to exist in the form of free ions and carbonate complexes. Stable organic complexes of Cu in road dust leachates were strongly adsorbed by soakaway sediments despite the limited adsorption of DOC. On the other hand, desorption of free Mn, Zn and Cd ions from the sediment receiving road dust leachates was observed, indicating that heavy metals such as Mn, Zn and Cd may ultimately reach groundwater as free ions.  相似文献   

15.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

16.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K(d) and K(f) coefficients from experimental data. The K(d) values were utilized to calculate the partition coefficient normalized to soil organic carbon (K(oc)). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K(oc) (mL g(- 1)) values ranged in both soils from 98 - 3235, 1024 - 2644, 145 - 2631 and 104 - 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r(2) = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

17.
Hydraulic conductivity and sorption coefficients for chlorinated hydrocarbons (chloroform, carbon tetrachloride and tetrachloroethylene) were evaluated for 216 sediment samples collected across a 15 m transect and a 21 m depth interval in a contaminated aquifer near Schoolcraft, Michigan. Relationships between hydraulic conductivity, linear sorption partition coefficients, grain size classes, and spatial location were investigated using linear regression analysis and geostatistical techniques. Clear evidence of layering was found in sorption properties, hydraulic conductivity and grain sizes. Conductivity correlated well with grain size, as expected, but sorption varied inversely with grain size, contrary to some previous reports. No significant correlation was found between sorption properties and hydraulic conductivity. This is likely due to the unexpected presence of small amounts of highly sorptive coal-like solids, which dominate the sorption behavior but have little effect on conductivity. The results demonstrate that recent findings regarding the high sorption capacity of coal materials found in soils can exert a controlling influence on contaminant transport. Designers of in situ remediation systems should be cautioned that 1) it is not reasonable to assume that sorption capacity and hydraulic conductivity are related, 2) sorption capacity and hydraulic conductivity are critical measurements for contaminant site characterization and subsequent transport modeling, 3) estimating sorption capacity from organic carbon measurement may lead to greater errors than performing sorption isotherms, and 4) it is more important to characterize vertical heterogeneity rather than horizontal heterogeneity because both sorption and hydraulic conductivity are correlated across longer distances in the horizontal plane.  相似文献   

18.
In Northern Alberta, the placement of out-of-pit oil sands tailings ponds atop natural buried sand channels is becoming increasingly common. Preliminary modeling of such a site suggests that process-affected (PA) pond water will infiltrate through the underlying clay till aquitard, reaching the sand channel. However, the impact of seepage upon native sediments and groundwater resources is not known. The goal of this study is to investigate the role of adsorption and ion exchange reactions in the clay till and their effect on the attenuation or release of inorganic species. This was evaluated using batch sorption experiments (traditional and a recent modification using less disturbed sediment samples) and geochemical modeling with PHREEQC. The results show that clay till sediments have the capacity to mitigate the high concentrations of ingressing sodium (600 mg L(-1)), with linear sorption partitioning coefficients (K(d)) of 0.45 L kg(-1). Ion exchange theory was required to account for all other cation behaviour, precluding the calculation of such coefficients for other species. Qualitative evidence suggests that chloride will behave conservatively, with high concentrations remaining in solution (375 mg L(-1)). As a whole, system behaviour was found to be controlled by a combination of competitive ion exchange, dissolution and precipitation reactions. Observations, supported by PHREEQC simulations, suggest that the influx of PA water will induce the dissolution of pre-existing sulphate salts. Sodium present in the process-affected water will exchange with sediment-bound calcium and magnesium, increasing the divalent ions' pore fluid concentrations, and leading to the precipitation of a calcium-magnesium carbonate mineral phase. Thus, in similar tailings pond settings, particularly if the glacial till coverage is thin or altogether absent, it is reasonable to expect that high concentrations of sodium and chloride will remain in solution, while sulphate concentrations will exceed those of the ingressing plume (150 mg L(-1)).  相似文献   

19.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

20.
The sorption of various phenols to Aldrich-HA and BSA was investigated by solid phase microextraction (SPME). The Aldrich-HA sorption with log K(DOC)-values between 2 and 3 was determined, whereas the sorption to BSA with log K(DOC)-values between 2 and 6 was much stronger. To enable an estimation of sorption constants a QSAR model was investigated. The linear free energy relationship (LFER) model showed a good correlation between the sorption constants and the log K(OW)-values with correlation coefficients of R = 0.910 and R = 0.878 for Aldrich-HA and BSA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号