首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
基于海南省2016年工业环境统计数据,通过自下而上的方法建立海南省2016年工业大气污染源排放清单,并利用中国多尺度排放清单模型(MEIC)排放清单进行背景源补充,使用CALPUFF模型进行大气污染模拟。污染物排放清单结果显示,2016年海南省SO_2、NO_x、CO、PM_(2.5)、PM(10)、黑碳(BC)、有机碳(OC)、挥发性有机物(VOCs)和NH3的排放量分别为1.50×10~4、5.10×10~4、4.56×10~5、2.34×10~4、2.10×10~4、3.50×10~3、1.20×10~4、4.96×10~4、6.50×10~4 t,其中SO_2主要排放源为化石燃料固定燃烧源(分担率66.67%),NO_x主要排放源为交通源(分担率51.18%),CO、PM_(10)、PM_(2.5)主要排放源为生活源(分担率分别59.01%、81.28%和87.62%),VOCs主要排放源为工业溶剂使用源(分担率75.91%),NH_3主要排放源为农业源(分担率93.54%)。排放量较大的区域集中在儋州市、澄迈县一带。SO_2、NO_x年均最大浓度均出现在海口市,PM_(10)、PM_(2.5)年均最大浓度均出现在定安县。交通源对全省污染物浓度贡献突出,工业源虽然对颗粒物浓度贡献率较低,但仍需加强PM_(2.5)治理。  相似文献   

2.
建立了乌昌石区域非金属矿物制品业CO、NO_x、SO_2、PM_(2.5)和PM_(10) 5种大气污染物的排放清单,并进行了时空分布特征分析,初步探究了估算的不确定性。结果显示,乌昌石区域非金属矿物制品业CO、NO_x、SO_2、PM_(2.5)和PM_(10)总排放量分别为3.71×10~4、2.76×10~4、3.10×10~4、3.04×10~4、1.29×10~5 t。熟石膏行业是CO的主要排放源;水泥(干法)行业是NO_x、SO_2、PM_(2.5)和PM_(10)的主要排放源。乌鲁木齐市是CO、NO_x和SO_2排放量的最大贡献源;石河子市是PM_(2.5)和PM_(10)排放量的最大贡献源。乌昌石区域5月至9月是一年中污染物排放的高峰期,11:00至20:00是一天中污染物排放的高峰期。空间上,乌昌石区域的污染物排放主要分布在乌鲁木齐市中部、西南部以及石河子市。  相似文献   

3.
通过现场调研结合物料衡算法、排放因子法,建立了2015年乌鲁木齐市固定燃烧点源大气污染物CO、NO_x、SO_2和PM_(2.5)排放清单。结果表明,2015年乌鲁木齐市CO、NO_x、SO_2、PM_(2.5)的排放量分别为4.41×10~4、6.20×10~4、4.61×10~4、1.57×10~4t;从排放污染物的行业来看,采矿与制造业对4种污染物排放的贡献最大,其对CO、NO_x、SO_2、PM_(2.5)排放的贡献率分别为49.02%、42.17%、48.40%、78.55%。从地区分布来看,米东区污染物排放量最大,其对CO、NO_x、SO_2、PM_(2.5)排放的贡献率分别为46.99%、45.90%、51.69%、29.68%。从排放时间来看,供暖季污染物的排放量明显高于非供暖季,白天的污染物排放量高于夜晚。采用蒙特卡罗统计法分析预测的污染物排放量与排放清单计算结果较为接近。  相似文献   

4.
基于机动车排放因子(MOVES)模型和地理信息系统(ArcGIS)技术,建立了西安市2017年分辨率为1km×1km的机动车污染物排放清单。结果显示:2017年西安市机动车污染物PM_(2.5)、PM_(10)、NO_x(NO+NO_2)、NO、NO_2、N_2O和挥发性有机物(VOCs)的年排放总量分别为126.1×10~4、138.2×10~4、2 884.2×10~4、2 577.8×10~4、306.4×10~4、27.9×10~4、1 281.2×10~4 kg;柴油车是PM_(2.5)、PM_(10)和NO_x排放的主要来源,贡献率分别为80.2%、79.5%和75.8%;VOCs和N_2O则主要来自汽油车,贡献率分别为74.2%、89.7%;总体看来,研究区域内不同污染物的空间分布规律相似,这与西安市公路分布有关,PM_(2.5)和NO_x的排放主要集中在主城区及周边县区的高速路和国道,而VOCs的排放主要集中在主城区二环及环内。  相似文献   

5.
建立了2017年嘉兴市人为源大气污染物排放清单。结果发现,SO_2、NO_x、CO、挥发性有机物(VOCs)、NH_3、总悬浮颗粒物(TSP)、PM_(10)、PM_(2.5)、黑碳(BC)和有机碳(OC)排放总量分别为15 224、60 663、102 600、93 256、26 266、118 923、70 367、19 024、941、1 622t。SO_2的最大排放源是化石燃料固定燃烧源中的电力供热;NO_x的最大排放源是移动源中的柴油车;CO的最大排放源是移动源中的汽油车;VOCs的最大排放源是工艺过程源中的石油化工;NH_3的最大排放源是农业源中的氮肥施用;TSP的最大排放源是扬尘源中的道路扬尘;PM_(10)和PM_(2.5)的最大排放源是工艺过程源中的水泥生产;BC的最大排放源是移动源中的柴油车;OC的最大排放源是餐饮油烟源中的餐饮油烟。对于大气污染中普遍关注的6种污染物,SO_2、NO_x、PM_(10)、PM_(2.5)和VOCs排放的重点源主要集中在各县(市、区)的工业园区或工业集聚区,而NH_3的排放空间分布相对比较分散。  相似文献   

6.
建立了2015年乌昌石区域化石燃料固定燃烧点源大气污染物(NO_x、SO_2、PM_(2.5)和PM_(10))的排放清单,并对污染物的时空分布特征进行了分析。结果表明,2015年乌昌石区域化石燃料固定燃烧点源NO_x、SO_2、PM_(2.5)和PM_(10)的年排放量分别为2.10×10~5、1.52×10~5、4.28×10~4、8.35×10~4 t。从行业上来看,电力生产与供应行业对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为70.78%、66.56%、51.10%、49.98%;从化石燃料上来看,煤炭对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为95.63%、99.84%、99.70%、99.84%;从锅炉类型上来看,煤粉炉对NO_x、SO_2、PM_(2.5)和PM_(10)的贡献率最大,分别为84.20%、85.09%、83.43%、84.06%。固定燃烧点源污染物排放呈现出明显的时间变化特征,采暖季污染物排放量明显高于非采暖季,一天中白天的污染物排放量高于夜晚。空间分布显示,大气污染物的排放源主要集中在乌鲁木齐市、五家渠市和昌吉市。  相似文献   

7.
利用本地化修正的MOVES模型结合实地调研数据,测算了西安市机动车排放清单,并对各种污染物的排放分担率进行了分析。结果表明:2012年西安市机动车的PM_(2.5)、PM_(10)、NO_x、总碳氢化合物(THC)、CO、挥发性有机物(VOCs)、NH_3和SO_2排放总量分别为1 890.48、2 668.89、40 847.75、19 413.30、217 103.04、15 244.86、539.76、2 087.50 t;中型货车和重型货车是PM_(2.5)、PM_(10)和NOx的主要贡献者,小型客车和摩托车是THC、CO和VOCs的主要贡献者,小型客车是NH_3的主要贡献者,小型客车与重型货车对SO_2的排放分担率均较高;柴油车对PM_(2.5)、PM_(10)、NO_x和SO_2的排放分担率高于汽油车,而汽油车对THC、CO、VOCs和NH_3的分担率则高于柴油车;CO在冬季排放最多,其余污染物的排放均在夏季最多,但污染物的季节变化总体上不明显。  相似文献   

8.
采用基于气象预报(WRF)的多尺度空气质量(CMAQ)模型,通过研究不同大气污染物排放情景下PM_(2.5)平均浓度变化,分析SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs等大气污染物减排对武汉市PM_(2.5)的影响。结果表明,大气污染物减排对武汉市PM_(2.5)年均浓度影响十分显著,且随着污染控制力度加大,PM_(2.5)污染持续减轻;当SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放量均削减40%时,PM_(2.5)年均浓度下降24.0%,依然超出《环境空气质量标准》(GB 3095—2012)二级标准值。基于空间布局和行业敏感性确定武汉市大气污染控制方案,方案实施后SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs排放总量分别下降53%、26%、32%、36%和31%,PM_(2.5)年均浓度下降35%左右,控制效果更加明显。  相似文献   

9.
为探讨焦作市冬季PM_(2.5)中水溶性离子特征及其来源,于2017年12月至2018年2月在焦作市区连续采集大气颗粒物PM_(2.5)样品,测定其中9种水溶性离子浓度。结果表明,焦作市冬季PM_(2.5)质量浓度为(99.11±73.26)μg/m~3,总水溶性离子质量浓度为(66.88±48.68)μg/m~3,其中NO_3~-、SO_4~(2-)、NH4_+是水溶性离子的主要成分,3者合计占总水溶性离子的81.5%(质量分数)。与清洁天相比,污染天NO_3~-、SO_4~(2-)、NH_4~+在PM_(2.5)中的占比显著增加,表明人为活动排放的二次污染物是焦作市冬季污染天PM_(2.5)的主要贡献成分;随着相对湿度的增加,大气中存在明显的气溶胶二次转化过程;焦作市大气PM_(2.5)移动源贡献大于固定源。焦作市PM_(2.5)中水溶性离子在清洁天主要受工业和生物质燃烧影响,而在污染天主要受气态污染物二次转化影响;后向轨迹聚类显示,采样期间焦作市主要受京津冀地区、西北地区气团影响。  相似文献   

10.
比较了天津市雾霾天和非雾霾天PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Ca~(2+)、Na~+、Mg~(2+)、K~+)的污染特征,并对其来源进行分析。结果表明:(1)非雾霾天PM_(2.5)日均质量浓度为35~60μg/m~3,均值为43μg/m~3,雾霾天PM_(2.5)日均质量浓度为120~332μg/m~3,均值为242μg/m~3;雾霾天水溶性无机离子浓度均高于非雾霾天。(2)非雾霾天SO_4~(2-)主要来自大气中燃煤源的SO_2二次转化,NO_3~-主要来自一次污染源,雾霾天SO_4~(2-)、NO_3~-主要来自大气中燃煤源的SO_2、NO_2二次转化;非雾霾天NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,雾霾天NH_4~+主要以NH_4NO_3和NH_4HSO_4的形式存在;Na~+、K~+、Cl~-除了海盐来源外,煤和生物质的燃烧及其二次转化是主要贡献源;Ca~(2+)和Mg~(2+)主要来自建筑扬尘源和土壤扬尘源。(3)风速和相对湿度是雾霾天SO_4~(2-)、NO_3~-、NH_4~+浓度变化的重要原因。  相似文献   

11.
为了解西安市燃煤锅炉排放颗粒物的组分情况,采用稀释通道采样,用滤膜采集了西安市3台链条炉排放颗粒物中的PM_(2.5)和PM_(10),并利用离子色谱仪(IC)、电感耦合等离子体质谱仪(ICP-MS)和碳分析仪等分析了其中的主要组分。实验结果表明,燃煤锅炉排放颗粒物中PM_(2.5)和PM_(10)的主要组分有SO_4~(2-)、NH_4~+、Cl~-、有机碳(OC)、元素碳(EC)、Al、Si。Si、Ca等地壳元素在PM_(10)中所占比例多于PM_(2.5),而NO_3~-、NH_4~+、OC等二次生成物在PM_(2.5)中所占比例多于PM_(10)。对比PM_(2.5)和PM_(10)组分可以发现,同种组分在不同燃煤锅炉排放的PM_(2.5)和PM_(10)中分布差异很大,这可能与除尘、脱硝等工艺密切相关。研究内容对西安市大气颗粒物源解析工作具有重要的参考价值,为西安市颗粒物源解析项目积累了一定的经验。  相似文献   

12.
对嘉兴市2013—2017年的大气污染特征进行了分析,同时研究了区域传输对其PM_(2.5)、PM_(10)、NO_2和SO_2的影响和嘉兴市O_3生成的主要原因。结果表明,自2013年以来嘉兴市PM2.5逐年下降,重度污染及以上天数逐年减少,环境空气质量总体呈逐年好转趋势。截至2017年,PM_(10)、NO_2、SO_2和CO均已达到《环境空气质量标准》(GB 3095—2012)二级标准,但PM_(2.5)和O_3仍未达标。2017年,周边地区(苏州市、湖州市、上海市、杭州市、绍兴市和宁波市)对嘉兴市PM_(2.5)、PM_(10)、NO_2和SO_2的传输贡献分别为36.2%、31.9%、25.6%、26.7%,季节差异较大,建议根据区域传输的季节性变化,制定针对性的联防联控措施。嘉兴市O3污染主要受挥发性有机物(VOCs)控制,应重点控制VOCs排放,辅以控制NO_x排放。  相似文献   

13.
以北京西山森林公园为观测点,运用双通道颗粒物在线监测设备监测PM_(2.5)质量浓度,使用离子色谱仪测定样品中水溶性离子浓度,对北京西山油松林PM_(2.5)质量浓度及水溶性离子特征进行分析。结果表明:PM_(2.5)质量浓度为冬季(121.29±16.78)μg·m~(-3)春季(106.06±12.68)μg·m~(-3)秋季(88.01±17.44)μg·m~(-3)夏季(72.67±12.18)pg·m~(-3);SO-4~(2-)、Na~+、N0_3~-、HC0O~-是PM_(2.5)中最主要的水溶性离子成分,占所测水溶性离子浓度在四季分别为94.99%、72.66%,72.66%、89.52%,PM_(2.5)受SO_4~(2-)、Na~+、N0_3~_、NH_4~+影响较大基本呈正相关关系,SO_4~(2-)、Na~+、N0_3~-、NH_4~+、PM_(2.5)浓度季节变化一致,即在冬季最高,夏季最低春秋次之,且水溶性离子季节差异显著。SO_4~(2-)和N0_3~-、Na~+、NH_4~+的相关性极显著(r=0.85、0.80、0.92),NO_3~-和Na~+、NH_4~+之间关系也较大(r=0.87,0.66),Ca~(2+)和Mg~(2+)相关性极明显(r=0.98),其他水溶性离子间无明显的相关性,固定源和海洋源对水溶性离子贡献程度呈现出季节差异,秋季机动车尾气排放对空气硫和氮污染贡献达最高,春季最低,夏秋季海洋源对Cl~-影响明显。通过对森林植被区PM_(2.5)、水溶性离子特征及关系进行分析,更好地发挥植被的生态效益,提高空气质量。  相似文献   

14.
采用ICS-1100型离子色谱仪在2014年6月到2015年6月期间对西安市大气中PM_(2.5)水溶性离子(NO_3~-、NH_4~+、SO_4~(2-)、NO_2~-、Cl~-、Na~+、Ca~(2+)、Mg~(2+)、K+)进行的实时监测,分析了全年PM_(2.5)中水溶性无机离子变化特征。结果显示:采样期间,西安市PM_(2.5)中NO_3~-、NH_4~+、SO_4~(2-)和Cl~-年均值占总离子的89.49%,且有明显月变化趋势,峰值出现在11和12月份,月浓度均值较往年同期降低,最高达到30.26、15.19、11.43和16.60μg·m~(-3)。Na~+、Ca~(2+)、Mg~(2+)和K~+浓度变化趋势与主离子不完全一致。NO_3~-均值大于SO_4~(2-)均值,表明PM_(2.5)中水溶性离子的主要贡献者为移动源。NO_3~-小时均值高于SO_4~(2-)小时均值,且在10:00和20:00处形成2个峰值。PM_(2.5)中NO_3~-与NO_2~-在0.05水平上显著相关,SO_4~(2-)与Cl~-的在0.01水平上极显著相关。  相似文献   

15.
2014年7月—2015年5月典型季节期间在重庆城区选择典型站点开展PM_(2.5)样品采集,并测量质量浓度,分析样品中水溶性离子、无机元素、OC和EC等组分,在此基础上对组分化学组成进行了质量重构。结果表明:观测期间PM_(2.5)年均值为76.4μg·m~(-3),浓度季节变化为冬季秋季春季夏季;组分方面,以二次转化为主的SO_4~(2-)、NH_4~+、NO_3~-和OC是PM_(2.5)组分中最主要成分,OC/EC比值4个季度均大于2,表明城区二次有机碳生成显著;硫氧化率(SOR)分析,气态污染物SO_2的二次转化效率较高,大气存在明显的二次转化过程。PM_(2.5)质量重构后主要组成为有机气溶胶(OM)、二次无机离子(SNA)和矿物尘,重庆城区应协同控制一次排放的颗粒物和气态污染物SO_2和NO_x,从而控制二次组分浓度。  相似文献   

16.
2015年8月23日—9月4日京津冀地区对部分污染源实行了临时性的减排管控措施,为保障9月3日北京大阅兵的空气质量起到了重要作用。天津作为协同减排的重要城市,阅兵期间空气质量变化一直备受关注。为评估这次减排管控措施对空气质量的改善效果,于2015年8月10日—9月15日,选择天津市气象局院内观测场,利用自动在线观测仪器对大气污染物NO_x、SO_2、CO、O_3及PM_(2.5)进行了连续观测,以天津所采取的临时减排措施为时间节点,对人为管控前后污染物的浓度水平、源贡献及日变化特征进行了比对分析,并结合气团输送特征讨论了气象条件在各时段的贡献。结果显示:在减排期间(2015年8月23日—9月4日),NO、NO_2、SO_2、CO、O_3及PM_(2.5)浓度较减排前(2015年8月10日—22日)分别降低了12.3%、34.1%、41.8%、21.1%、39.0%及63.1%,燃煤、工业及扬尘源控制效果显著;减排后(2015年9月5日—15日)较减排期,NO、NO_2、SO_2、CO及PM_(2.5)浓度分别升高了77.2%、46.1%、13.3%、12.5%和11.5%,空气质量主要受机动车源的影响。NO_2、SO_2、CO及PM_(2.5)在各时段的日变化基本呈早晚双峰型,NO呈早单峰型,O_3呈午后单峰型,减排措施有效降低了峰值和浓度水平,污染物排放至大气后,近地面气象要素也会有所影响。由气团的输送特征可知,有利的气象条件也是减排期间良好空气质量的重要因素,减排后CO、SO_2和PM_(2.5)无显著回升主要得益于清洁气团的频繁出现。  相似文献   

17.
北京市燃煤的空气质量影响及其控制研究   总被引:6,自引:0,他引:6  
建立了2005年北京市燃煤污染源排放清单,利用MM5-CMAQ模型计算了各区县各行业燃煤对北京市空气质量的影响。研究表明,2005年1月北京市燃煤源对各监测站点SO_2浓度的贡献在70%以上,对PM_(10)和NO_x浓度的贡献约为20%~40%和10%~30%;7月本地燃煤源对SO_2浓度的贡献在40%~50%左右。1月采暖锅炉对空气质量影响最大,占50%~70%;7月电厂的影响最大。依据北京市奥运空气质量保障方案以及"十一五"期间能源规划,建立了2010年燃煤污染源大气排放的规划情景,并模拟了各规划措施对大气质量的改善效果。通过实施电厂脱硫脱硝除尘、炼焦工业停产、钢铁行业和水泥行业搬迁减产、供热锅炉改造、平房用煤改造等措施,与2005年相比,SO_2平均浓度下降30%左右,NO_x和PM_(10)浓度的下降幅度15%。  相似文献   

18.
以郑州市为研究对象,2013年为基准年,通过提取卫星遥感资料中的土地利用信息,利用排放系数法计算郑州市裸露地面风蚀扬尘源中PM_(2.5)、PM_(10)、总悬浮颗粒物(TSP)的排放系数及年排放量,并对排放量做分辨率为1km×1km的空间分配,建立郑州市裸露地面风蚀扬尘源颗粒物的排放清单。结果表明:郑州市裸露地面类型主要为北部黄河滩涂,西部嵩山裸露山体以及中东部建筑施工、土方开挖等形成的空地;郑州市裸露地面面积为208km~2,占郑州市总面积的2.8%;2013年郑州市裸露地面风蚀扬尘中PM_(2.5)、PM_(10)、TSP的排放系数分别为(3.36±2.24)、(20.16±13.44)、(67.21±44.81)t/(km~2·a),PM_(2.5)、PM_(10)、TSP年排放量分别为597、3 581、11 937t。  相似文献   

19.
采用大气挥发性有机物(VOCs)在线监测系统对成都市冬季重污染过程的VOCs进行了连续在线观测,用正交矩阵因子分解(PMF)模型开展了VOCs源解析工作,并对重污染成因进行了分析。结果表明:观测期间成都市总VOCs(TVOCs)体积分数为21.83×10~(-9)~183.59×10~(-9),平均值为54.17×10~(-9),TVOCs中烷烃浓度最高,其次为炔烃、烯烃、芳香烃和卤代烃;成都市主要VOCs污染源为机动车排放源、液化石油气燃烧排放源、工业源、生物质燃烧源和溶剂使用源,贡献率分别为34.15%、21.57%、19.08%、15.19%、10.02%;边界层压缩和静风条件可能是导致VOCs和PM2.5浓度增加的主要原因。  相似文献   

20.
为探讨石家庄秋季PM_(2.5)中低分子量有机酸组成特征与来源,于2017年9—10月对石家庄PM_(2.5)进行采样并测定了3种低分子量有机酸(甲酸、乙酸、草酸)浓度,还测定了水溶性无机离子(Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)辅助讨论有机酸来源。结果发现,石家庄秋季PM_(2.5)中草酸浓度高于甲酸和乙酸,而甲酸和乙酸浓度接近,甲酸、乙酸和草酸的质量浓度分别为20~240、50~280、60~1 130ng/m~3。石家庄秋季PM_(2.5)中低分子量有机酸受自然源和人为源的混合影响,以人为源占主导,其中甲酸和乙酸的同源性较高。甲酸的可能来源为工业燃煤、交通汽车尾气排放、生物质燃烧、土壤和扬尘。乙酸的可能来源为工业燃煤、交通汽车尾气排放、生物质燃烧、生活污水、土壤和扬尘。草酸的可能来源为交通汽车尾气排放、大气氧化反应、生物质燃烧、土壤和扬尘、生活污水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号