首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-five strains of filamentous fungi, encompassing 14 different species and belonging mainly to Ascomycetes, were tested for their ability to degrade benzo[a]pyrene (BaP) in mineral liquid medium. The most performing isolates for BaP degradation (200 mg?l?1) in mineral medium were Cladosporium sphaerospermum with 29 % BaP degradation, i.e., 82.8 μg BaP degraded per day (day?1), Paecilomyces lilacinus with 20.5 % BaP degradation, i.e., 58.5 μg BaP day?1, and Verticillium insectorum with 22.3 % BaP degradation, i.e., 64.3 μg BaP day?1, after only 7 days of incubation. Four variables, e.g., biomass growth on hexadecane and glucose, BaP solubilization, activities of extracellular- and mycelium-associated peroxidase, and polyethylene glycol degradation, were also studied as selective criteria presumed to be involved in BaP degradation. Among these variables, the tests based on polyethylene glycol degradation and on fungal growth on hexadecane and glucose seemed to be the both pertinent criteria for setting apart isolates competent in BaP degradation, suggesting the occurrence of different mechanisms presumed to be involved in pollutant degradation among the studied micromycetes.  相似文献   

2.
Zang S  Li P  Li W  Zhang D  Hamilton A 《Chemosphere》2007,67(7):1368-1374
A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed. Hydrogen peroxide-zinc (H(2)O(2)-Zn), the fungus - Aspergillus niger and the bacteria - Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus-bacteria combined with H(2)O(2)-Zn, the concentration range of BaP in the cultures was 30-120mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.  相似文献   

4.
Accumulation and elimination of polycyclic aromatic hydrocarbons (PAHs) were studied in the fungus Fusarium solani. When the fungus was grown on a synthetic medium containing benzo[a]pyrene, hyphae of F. solani contained numerous lipid vesicles which could be stained by the lipid-specific dyes: Sudan III and Rhodamine B. The fluorescence produced by Rhodamine B and PAH benzo[a]pyrene were at the same locations in the fungal hyphae, indicating that F. solani stored PAH in pre-existing lipid vesicles. A passive temperature-independent process is involved in the benzo[a]pyrene uptake and storage. Sodium azide, a cytochrome c oxidation inhibitor, and the two cytoskeleton inhibitors colchicine and cytochalasin did not prevent the transport and accumulation of PAH in lipid vesicles of F. solani hyphae. F. solani degraded a large range of PAHs at different rates. PAH intracellular storage in lipid vesicles was not necessarily accompanied by degradation and was common to numerous other fungi.  相似文献   

5.
Effects of riboflavin on the phototransformation of benzo[a]pyrene   总被引:3,自引:0,他引:3  
Zhao X  Hu X  Hwang HM 《Chemosphere》2006,63(7):1116-1123
Riboflavin (Vitamin B2) is a natural dye-sensitizer habitually present in natural waters. Effects of riboflavin as photosensitizer on the transformation of benzo[a]pyrene (BaP) (10 microM) in the aqueous-organic solvent (water/acetonitrile/methanol 50/40/10) were investigated in this study. The photolysis half life of BaP in solution containing 50 microM riboflavin was 5 min, compared to 98 min in the absence of riboflavin. The rate of phototransformation of BaP increased as the concentration of riboflavin was raised from 10 microM to 100 microM under both natural sunlight and UVA irradiation. The half life of BaP in the presence of 50 microM riboflavin was 10.6 min and 43.1 min when exposed to visible range of natural sunlight and UVA irradiation respectively. Riboflavin decomposes under natural sunlight. Lumichrome, a principal photoproduct of riboflavin, was shown to photosensitize BaP under natural sunlight after photolysis of riboflavin. Our study indicated that other photoproducts from riboflavin, such as lumiflavin, were also involved in the phototransformation of BaP under sunlight when riboflavin diminished. The major photoproducts in the photolysis of BaP were identified as 1,6-benzo[a]pyrene-dione, 3,6-benzo[a]pyrene-dione, 6,12-benzo[a]pyrene-dione by using high performance liquid chromatography (HPLC). All these products were detected in the samples which were irradiated under different light sources and in the presence or absence of riboflavin. The possible phototransformation mechanism was discussed.  相似文献   

6.
Previous research has documented several PAHs that interact synergistically, causing severe teratogenicity in developing fish embryos. The coexposure of CYP1A inhibitors (e.g. FL or ANF) with AHR agonists (e.g. BaP or BNF) results in a synergistic increase in toxicity. As with chemical CYP1A inhibitors, it has also been shown that CYP1A morpholinos exacerbate BNF-induced embryotoxicity. We hypothesized that a hypoxia-induced reduction in CYP1A activity in BNF or BaP-exposed zebrafish embryos would similarly enhance pericardial effusion and other developmental abnormalities. BaP, BNF, ANF, and FL exposures, both individually and as BaP+FL or BNF+ANF combinations, were performed under hypoxia and normoxia. CYP1A activity in the BaP+hypoxia and BNF+hypoxia embryos was reduced by approximately 60% relative to normoxia embryos. Although CYP1A activity was significantly reduced, we did not observe any increase in pericardial effusion in either group. An unexpected yet particularly interesting result of these experiments was the observed interaction of both FL and ANF with hypoxia. Relatively high, yet environmentally relevant concentrations of FL (100-500 microg L(-1)) interact with moderate hypoxia (7.3% DO) through an unknown mechanism, resulting in pericardial effusion and severe lordosis. Additionally, ANF exposures (100 microg L(-1)) which are not normally teratogenic caused dramatic pericardial effusion, but not lordosis, when embryos were coexposed to hypoxia. These results suggest that reduced CYP1A activity may not exclusively underlie observed developmental toxicity, and that hypoxia may exacerbate the developmental toxicity of some PAH mixtures.  相似文献   

7.
研究了非离子型表面活性剂Triton X-100(TX-100)和Tween80(TW-80)对苯并[a]芘的增溶特性及对苯并[a]芘高效降解菌Bacillus pumilus strain Bap9生长的影响,结果表明,2种表面活性剂对苯并[a]芘均有良好的增溶效果,均能作为碳源和能源被菌株Bap9所利用,TX-100增溶能力和增殖能力相对更强;不同浓度的TX-100对菌株降解苯并[a]芘的影响不同,当浓度为1 000 mg/L时,对降解的促进作用最强,可将苯并[a]芘降解率提高20.8%;在苯并[a]芘降解过程中,TX-100亦能作为碳源被菌株Bap9利用,不产生二次污染,因此可用于苯并[a]芘污染环境的生物修复。  相似文献   

8.
Benzo[a]pyrene (BaP), a five-ring polycyclic aromatic hydrocarbon (PAH), which has carcinogenic potency, is highly recalcitrant and resistant to microbial degradation. A novel fungus, Lasiodiplodia theobromae (L. theobromae), which can degrade BaP as a sole carbon source in liquid, was isolated in our laboratory. To prompt the further application of L. theobromae in remediation of sites polluted by BaP and other PAHs, the present study was targeted toward the removal of BaP and PAHs from soil by L. theobromae. The degradation of BaP by L. theobromae was studied using a soil spiked with 50 mg/kg BaP. L. theobromae could remove 32.1 % of the BaP after 35 days of cultivation. Phenanthrene (PHE) inhibited BaP degradation as a competitive substrate. The tested surfactants enhanced BaP degradation in soil by different extents, and a removal rate of 92.1 % was achieved at a Tween-80 (TW-80) concentration of 5 g/kg. It was revealed that TW-80 could not only enhance BaP bioavailability by increasing its aqueous solubility and decreasing the size of its colloid particles but also increase enzyme secretion from L. theobromae and the population of L. theobromae. Moreover, ergosterol content together with the biomass C indicated the increase in L. theobromae biomass during the BaP biodegradation process in soils. Finally, a soil from a historically PAH-contaminated field at Beijing Coking Plant in China was tested to assess the feasibility of applying L. theobromae in the remediation of polluted sites. The total removal rate of PAHs by L. theobromae was 53.3 %, which is 13.1 % higher than that by Phanerochaete chrysosporium (P. chrysosporium), an effective PAH degrader. The addition of TW-80 to the field soil further enhanced PAH degradation to 73.2 %. Hence, L. theobromae is a promising novel strain to be implemented in the remediation of soil polluted by PAHs.  相似文献   

9.
This study measured PAHs contained in the feedstock oil, carbon black products, and stack flue gas, then the fate of PAHs was assessed from the mass balance point of view for a carbon black manufacturing process. Results show the carbon black manufacturing process would result in the depletion of total-PAHs and the summation of top three carcinogenic PAH species (i.e., BbF+BaP+DBA) up to 98.15% and 99.83%, respectively. The above results suggest that the carbon black manufacturing process would result in not only the decrease of the amount of total-PAHs, but also the carcinogenic potencies of PAHs originally contained in the feedstock oil. Regarding PAHs contained in the carbon black products and stack flue gas, this study suggest they might be resulted mostly from high-temperature pyrolytic process, rather than the PAHs originally contained in the feedstock oil. For the carbon black manufacturing industry, since the soot (i.e., the carbon black) was completely collected as its final product, therefore most of carbon black-bearing PAHs did not directly release to atmosphere. On the other hand, PAHs contained in the stack flue gas were directly exhausted to the atmosphere and thus were assessed in this study. The results show the emission rates for total-PAHs and BbF+BaP+DBA for the stack flue gas were 2.18 kg/day and 1.50 g/day, respectively, which were approximately 25% and 40% of those exhausted from a municipal incinerator with a treatment capacity of 300 metric tons/day. It is concluded that the carbon black manufacturing process might not be a significant PAHs emission source, as compared to the municipal incinerator.  相似文献   

10.
A study has been conducted to enhance degradation of a mixture of polycyclic aromatic hydrocarbons (PAHs) by combining biodegradation with hydrogen peroxide oxidation in a former manufactured gas plant (MGP) soil. An active bacterial consortium enriched from the MGP surface soil (0-2 m) biodegraded more than 90% of PAHs including 2-, 3-, and 4-ring hydrocarbons in a model soil. The consortium was also able to transform about 50% of 4- and 5-ring hydrocarbons in the MGP soil. As a chemical oxidant, Fenton's reagent (H2O2 + Fe2+) was very efficient in the destruction of a mixture of PAHs (i.e., naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), pyrene (PYR), chrysene (CHR), and benzo(a)pyrene (BaP)) in the model soil; noticeably, 84.5% and 96.7% of initial PYR and BaP were degraded, respectively. In the MGP soil, the same treatment destroyed more than 80% of 2- and 3-ring hydrocarbons and 20-40% of 4- and 5-ring compounds. However, the low pH requirement (pH 2-3) for optimum Fenton reaction made the process incompatible with biological treatment and posed potential hazards to the soil ecosystem where the reagent was used. In order to overcome such limitation, a modified Fenton-type reaction was performed at near neutral pH by using ferric ions and chelating agents such as catechol and gallic acid. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70% and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6-6.5.  相似文献   

11.
The role of algal concentration in the transfer of organic contaminants in a food chain has been studied using the ubiquitous model polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) as the contaminant, Isochrysis galbana as the phytoplankton food source, and the common mussel (Mytilus edulis) as the primary consumer. The effect of algal concentration on BaP uptake by M. edulis was determined by feeding M. edulis daily with I. galbana which had previously been kept in the presence of BaP for 24 h. Four combinations of concentrations of algae and BaP were used to give final exposure concentrations of 30,000 or 150,000 algal cells ml(-1) in combination with either 2 or 50 microg BaP l(-1). BaP concentrations were determined fluorometrically in rest tissues (excluding digestive glands) and digestive gland microsomal fractions of M. edulis after 1, 7 and 15 days exposure, and also in isolated algae. Potentially toxic effects of BaP on M. edulis were examined in terms of blood cell lysosomal membrane damage (neutral red dye retention assay) and induction of digestive gland microsomal mixed-function oxygenase (MFO) parameters [BaP hydroxylase (BPH) and NADPH-cytochrome c (P450) reductase activities]. BaP bioaccumulation in rest tissues (and to a lesser extent in digestive gland microsomes) of M. edulis increased with both increasing BaP and algal exposure concentrations, and over time, producing maximal bioconcentration factors in rest tissues after 15 days exposure to 150,000 algal cells ml(-1) and 50 microg BaP l(-1) of 250,000. The five-fold higher concentration of algae increased BaP bioaccumulation by a factor of approximately 2 for 50 microg BaP l(-1) at day 15. Blood cell neutral red dye retention time decreased linearly with increasing log(10) tissue BaP body burden, indicating an increased biological impact on M. edulis with increasing BaP exposure possibly due to a direct effect of BaP on blood cell lysosomal membrane integrity. An increase was seen in NADPH-cytochrome c reductase activity, and indicated in BPH activity, with 1 but not 7 or 15 days exposure to BaP, indicating a transient response of the digestive gland microsomal MFO system to BaP exposure.  相似文献   

12.
A microcosm experiment was conducted to investigate the dissipation of available benzo[a]pyrene (BaP) in soils co-contaminated with cadmium (Cd) and pyrene (PYR) during aging process. The available residue of BaP in soil was separated into desorbing and non-desorbing fractions. The desorbing fraction contributed more to the dissipation of available BaP than the non-desorbing fraction did. The concentration of bound-residue fraction of BaP was quite low across all treatments. Within the duration of this study (250 days), transformation of BaP from available fractions to bound-residue fraction was not observed. Microbial degradation was the dominant mechanism of the dissipation of available BaP in the soil. The dissipation of available BaP was significantly inhibited with the increment in Cd level in the soil. The addition of PYR (250 mg kg?1) remarkably promoted the dissipation of available BaP without reducing Cd availability in the soil. The calculated half-life of available BaP in the soil prolonged with the increment in Cd level; however, the addition of PYR shortened the half-life of available BaP by 13.1, 12.7, and 32.8 % in 0.44, 2.56, and 22 mg Cd kg?1 soils, respectively. These results demonstrated that the inhibiting effect of Cd and the promoting effect of PYR on the dissipation of available BaP were competitive. Therefore, this study shows that the bioremediation process of BaP can be more complicated in co-contaminated soils.  相似文献   

13.
Benzo[a]pyrene (BaP) biodegradation by Stenotrophomonas maltophilia was studied under the influence of co-existed Cu(II) ions. About 45% degradation was achieved within 3 d when dealing with 1 mg L?1 BaP under initial natural pH at 30 °C; degradation reached 48% in 2 d at 35 °C. Efficacy of BaP biodegradation reached the highest point at pH 4. In the presence of 10 mg L?1 Cu(II) ions, the BaP removal ratio was 45% on 7th day, and maintained stable from 7 to 14 d at 30 °C under natural pH. The favorable temperature and pH for BaP removal was 25 °C and 6.0 respectively, when Cu(II) ions coexisted in the solutions. Experiments on cometabolism indicated that S. maltophilia performed best when sucrose was used as an additional carbon source. GC–MS analysis revealed that the five rings of BaP opened, producing compounds with one or two rings which were more bioavailable.  相似文献   

14.
Zhang X  Wu RS  Fu W  Xu L  Lam PK 《Chemosphere》2004,55(10):1303-1308
Previous studies have shown that ultraviolet (UV) A light and the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) can synergistically enhance the formation of 8-hydroxy-2'deoxyguanosine (8-OHdG) in living cells. It has been postulated that the underlying mechanism is production of reactive oxygen species (ROS) via photosensitization, but direct evidence supporting this hypothesis has been lacking. This study examined intracellular ROS production in living cells co-exposed to UV-A and BaP as well as the relationship between intracellular production of ROS and formation of 8-OHdG. KB cells were exposed to BaP for 24 h, followed by exposure to UV-A (365 nm) or UV-B (312 nm). The levels of intracellular ROS were directly measured by use of the fluorescent probe dihydrorhodamine 123 (DHR-123) in flow cytometry. Levels of 8-OHdG were measured by high performance liquid chromatography coupled with electrochemical detection (HPLC-ECD). The results demonstrated that UV-B itself induced a much greater level of intracellular ROS than did UV-A alone under the same dose of energy (0.10 mW/cm(2), 20 min). The presence of BaP (13.3 microM) substantially increased ROS production in UV-A-treated cells (2.9-fold), but only slightly enhanced ROS production in UV-B-treated cells (1.3-fold). These results show that BaP acts mainly as a photosensitizer of UV-A, but not UV-B. Furthermore, greater intracellular ROS production was proportional to both BaP concentration and UV-A dosage. There was a linear relationship between ROS production and 8-OHdG formation in cells co-exposed to BaP and UV-A. Results of this study suggest that UV-A and BaP act synergistically to enhance ROS production and formation of 8-OHdG, resulting in increased DNA damage.  相似文献   

15.
This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A “data trimming” approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.  相似文献   

16.
Lou T  Xie H  Chen G  Gagné JP 《Chemosphere》2006,64(7):1204-1211
Dissolved organic matter (DOM) in natural waters can bind various organic pollutants, and the affinity of this binding is strongly influenced by the chemical characteristics of the DOM and water pH. This study examined the effects of photochemically induced alteration of the DOM's chemical properties and water pH on the binding of benzo(a)pyrene (BaP). Time- and pH-series of solar-simulated irradiations were performed on a natural water sample and aqueous DOM solutions prepared from aquatic and soil humic substances. The binding affinity of BaP, expressed as a partition coefficient of a compound to DOM, decreased substantially after the DOM samples were irradiated over environmentally relevant radiation doses and pH ranges. The lowering of the pH due to the photoproduction of acidic products often partly offsets the reduction of the binding affinity caused by direct photoalteration of the DOM's chemical structure. The decrease of the binding affinity, after correction for the photoinduced pH change, was positively correlated with the decrease in the molecular weight and the aromaticity of the DOM in the course of irradiation. Increasing O(2) abundance accelerated the decrease of the binding affinity as a result of enhanced DOM photodegradation. Visible light played a more important role in reducing the molecular weight and aromaticity of the DOM than in reducing the content of dissolved organic carbon (DOC) via photoremineralization while the reverse was true for UV radiation, indicating that photochemical reduction of the binding affinity may occur in natural waters at depths greater than UV radiation can reach. A decrease of the affinity of DOM for binding BaP will increase the free dissolved fraction of BaP and thus its availability and toxicity to aquatic organisms. The results from this study may have similar implications for organic pollutants other than BaP.  相似文献   

17.
Cuttings of Populus nigra L. cv. Loenen were cultivated in sand treated with one of the following PAHs: phenanthrene (Phen), fluoranthene (Flt), pyrene (Pyr), chrysene (Chr) and benzo[a]pyrene (BaP). The PAHs were applied at varying levels of concentration to each test series. After 6 weeks the concentration and the distribution of the PAHs in the substrate of the various sets of tests were compared with the concentration in the substrate of the control. Additionally the substrate and the plant roots were tested for evidence of degradation products of PAHs. The results revealed that the levels of concentration of Phen and Pyr detected in the substrate surrounding the roots was in some cases significantly lower than in the corresponding section of substrate in the unplanted set (= control). This phenomenon did not occur for Flt and BaP and in the case of Chr only in those substrates, which had been treated with the highest levels of concentration. As the presence of lesser amounts of Phen and Pyr in the plant pots cannot only be attributed to their accumulation and metabolism in the roots, it is fair to assume that the chemical transformation of these three PAHs took place outside the roots. The set of tests treated with Phen revealed the presence of 2- or 3-hydroxy-Phen (main components), a hydroxy-methoxy-Phen, 9,10-Phenanthrenequinone and one unidentified compound in metabolite form. Altogether eleven metabolites of Pyr were identified in the root extracts, which can be divided into three groups: 1-Hydroxy-Pyr and derivatives, dihydroxy-Pyr and derivatives and ring fission products (4-Hydroxy-Pyr and a derivative of the 4-Phen-carbonic acid). However, the metabolite mass detected for Phen and Pyr represents only an insignificant percentage in comparison with the lesser amounts of PAHs observed in the planted set of tests. This indicates that the three PAHs were reduced to lower molecular compounds, which are methodically impossible to record, and subsequently translocated to other parts of the plant and integrated into the biomass. Although no lesser amount for Flt and BaP was found in the plant pots, 1-Hydroxy-Flt, an unidentified compound of Flt and 1-Methoxy-BaP were detected. These are presumably end products which were enhanced in the roots. It was not possible to identify any transformation products of Chr. It can be assumed that the majority of metabolites were not synthesised in the roots but are a result of microbial degradation in the rhizosphere. The test plants improved the conditions for the biotransformation of Phen and Pyr significantly and accumulated Flt, Pyr, Chr and BaP in their roots. It can therefore be concluded that the use of plants in the bioremediation of contaminated soils is a promising option.  相似文献   

18.
Kim YH  Ahn JY  Moon SH  Lee J 《Chemosphere》2005,60(10):1349-1355
Efficiencies of two lypolytic enzymes (fungal cutinase and yeast esterase) in malathion degradation were investigated. Surprisingly, degradation rate of malathion by fungal cutinase was very high, i.e. almost 60% of initial malathion (500 mg l(-1)) was decomposed within 0.5 h, and nearly 50% of the degraded malathion disappeared within initial 15 min. With the yeast esterase, despite the same concentration, more than 65% of malathion remained even after 2-day treatment. During enzymatic degradation of malathion, two malathion-derived compounds were detected, and time-course changes in composition were also monitored. In the degradation by both fungal cutinase and yeast esterase, two additional organic chemicals were produced from malathion: malathion monoacid (MMA) and malathion diacid (MDA) by ester hydrolysis. Final chemical composition after 2 d was significantly dependent on the enzyme used. Fungal cutinase produced MDA as a major degradation compound. However in the malathion degradation by yeast esterase, an isomer of MMA was produced in abundance in addition to MDA. Toxic effects of malathion and its final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including MMA) by esterase severely caused membrane damage and inhibition of protein synthesis in bacterial cells, while in the fungal cutinase processes, malathion was significantly degraded to non-toxic MDA after the extended period (2 days).  相似文献   

19.
研究了非离子型表面活性剂Triton X-100(TX-100)和Tween80(TW-80)对苯并[a]芘的增溶特性及对苯并[a]芘高效降解菌Bacillus pumilus strain Bap9生长的影响,结果表明,2种表面活性剂对苯并[a]芘均有良好的增溶效果,均能作为碳源和能源被菌株Bap9所利用,TX-100增溶能力和增殖能力相对更强;不同浓度的TX-100对菌株降解苯并[a]芘的影响不同,当浓度为1 000 mg/L时,对降解的促进作用最强,可将苯并[a]芘降解率提高20.8%;在苯并[a]芘降解过程中,TX-100亦能作为碳源被菌株Bap9利用,不产生二次污染,因此可用于苯并[a]芘污染环境的生物修复。  相似文献   

20.
BaP is one of the most studied PAH, due to its ubiquitous presence in aquatic environments and toxicity to aquatic organisms. The main goal of this study was to assess BaP effects in Nile Tilapia after waterborne and dietary exposures, through the evaluation of EROD and GST activities in liver, gills and intestine, and BaP metabolites in bile; and also to evaluate the usefulness of these commonly used biomarkers after two different routes of exposure. Waterborne exposure to BaP led to a significant induction of EROD in all tissues analyzed (644%, 1640% and 2880% in relation to solvent in liver, gill and intestine respectively) while in dietary exposures EROD was induced only in intestine (3143%) after exposure to high BaP concentrations. GST activities with CDNB were slightly induced in liver (40%) and in gill (66%) after water exposure to BaP, and in intestine after dietary exposure to low BaP concentrations (182%). BaP metabolites in bile increased after both exposure routes, and were highly correlated with EROD activity after water exposure. In summary, this work has shown that the effects of BaP on biotransformation pathways depend on the route of exposure. Moreover, barrier tissues like gills and intestine also have an important role in the first-pass metabolism of BaP, reducing the amount of parent compound that reaches the liver to be metabolized. For that reason, EROD activity as a biomarker of exposure should also be applied in extrahepatic organs, like gills and intestine, in monitoring studies. Biliary BaP type metabolites are good reflectors of contamination levels under both exposure routes, while GST activity with CDNB as substrate, as a phase II enzyme, does not seem a reliable biomarker of exposure to BaP regardless the route of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号