首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the effects of nozzle types and 2,4-D formulations on spray deposition on different targets. Two field experiments were carried out in a completely randomized design, and treatments were arranged in a factorial scheme. Species in experiment 1 were Sumatran fleabane (Conyza sumatrensis) and Brazil pusley (Richardia brasiliensis) and in experiment 2 were soybeans (Glycine max) and Benghal dayflower (Commelina benghalensis). For both experiments, the first factor corresponded to spray nozzles with different settings (AD 110.015 – 61 and 105 L ha?1; AD 015-D – 75 and 146 L ha?1; XR 110.0202 – 200 L ha?1; and ADIA-D 110.02 – 208 L ha?1) and the second factor consisted of two formulations of 2,4-D (amine and choline). The formulation of 2,4-D choline has contained Colex-D? Technology. Similar or higher spray deposition was observed on the leaves and artificial targets when using 2,4-D choline as compared to the 2,4-D amine formulation, and these differences in deposition were more evident for nozzles applying lower spray volumes. Deposition was more affected by nozzle type when amine formulation was used, compared to choline formulation.  相似文献   

2.
Holt E  Weber R  Stevenson G  Gaus C 《Chemosphere》2012,88(3):364-370
Chlorinated pesticides can contain impurities of dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and their precursors, as a result of various manufacturing processes and conditions. As precursor formation of PCDD/Fs can also be mediated by ultraviolet light (UV), this study investigated whether PCDD/Fs are formed when currently used pesticides are exposed to natural sunlight. Formulations containing pentachloronitrobenzene (PCNB; n = 2) and 2,4-dichlorophenoxyacetic acid (2,4-D; n = 1) were exposed to sunlight in quartz tubes, and the concentration of 93 PCDD/F congeners were monitored over time. Considerable formation of PCDD/Fs was observed in both PCNB formulations (by up to 5600%, to a maximum concentration of 57 000 μg ∑PCDD/F kg−1) as well as the 2,4-D formulation (by 3000%, to 140 μg ∑PCDD/F kg−1). TEQ also increased by up to 980%, to a maximum concentration of 28 μg kg−1 in PCNB, but did not change in the 2,4-D formulation. Assuming similar yields as observed in the present study as a worst case scenario the use of PCNB in Australia may result in the formation of 155 g TEQ annum−1, contributed primarily by OCDD formation. This warrants detailed evaluations on the contemporary release of PCDD/Fs to the environment after the use of pesticides. Changes in congener profiles (including the ratio of PCDDs to PCDFs (DF ratio)) suggest that pesticide sources of PCDD/Fs after sunlight exposure may not be recognized based on matching source fingerprints established from manufacturing impurities. These changes also provide preliminary insights into the possible formation routes and types of precursors involved.  相似文献   

3.
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h−1 for atrazine and 0.039 h−1 for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters.  相似文献   

4.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k 1), the growth-linked mineralization rate constant (k 2) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k 1 significantly decreased in sequence of A horizon (0.113% day?1) > B horizon (0.024% day?1) = C horizon (0.026% day?1) and in each soil horizon was greater than k 2. Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k 1 or k 2, except that k 1 was significantly greater in upper slopes (0.170% day?1) than in lower slopes (0.080% day?1). Neither k 1 nor k 2 was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

5.
Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe3O4 was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 μ M was transformed within 48 h in the presence of 300 mg L?1 nanoscale Fe3O4, and the reaction rates increased with increasing dosage of nanoscale Fe3O4. The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite–water system. Reductive transformation of 2,4-D by microscale Fe3O4 was slower than that by nanoscale Fe3O4. The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.  相似文献   

6.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 × 3 × 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0–5 and 5–15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k1) varied from 0.03 to 0.22 day? 1, while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k1 and total 2,4-D mineralizationwas significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 ug 1–1/ng? 1 mL1/n and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

7.

Preharvest fruit-drop is a challenge to bayberry production. 2,4-D sodium as a commonly used anti-fruit-drop hormone on bayberry can reduce the yield loss caused by preharvest fruit-drop. The persistence and risk assessment of 2,4-D sodium after applying on bayberries were investigated. A method for determining 2,4-D sodium in bayberry was established based on LC-MS-MS. The average recoveries of 2,4-D sodium were at the range of 93.7–95.8% with relative standard deviations (RSDs) ranging from 0.9 to 2.8%. The dissipation rates of 2,4-D sodium were described using first-order kinetics, and its half-life ranged from 11.2 to 13.8 days. A bayberry consumption survey was carried out for Chinese adults for the first time. The safety assessments of 2,4-D sodium were conducted by using field trail data as well as monitoring data. Results showed that the chronic risk quotient and the acute risk quotient were calculated to be 0.23–0.59 and 0.02–0.05%, respectively, for Chinese adults, indicating low dietary risk for adults and children. In the end, the household cleaning steps were compared, and results showed that water rinsing for 1 min can remove 49.9% 2,4-D sodium residue, which provides pesticide removal suggestion for consumers.

  相似文献   

8.
In this study, we used primary cultures of fish hepatic cells as a tool for evaluating the effects of environmental contamination. Primary hepatic cell cultures derived from the subtropical fish Metynnis roosevelti were exposed to different concentrations (0.275, 2.75 and 27.5 μg L?1) of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Cellular respiratory activity was evaluated by polarography using three substrates: 0.5 M glucose, 0.5 M succinate and 0.5 M α-ketoglutarate. Significant changes were observed in cellular oxygen consumption with 0.5 M α-ketoglutarate. Even at low concentrations, 2,4-D and MCPA were potent uncouplers of oxidative phosphorylation. Primary cultures of M. roosevelti liver cells may provide a useful tool for the evaluation of environmental contaminant effects. A review of regulations regarding permitted concentrations of these herbicides is needed.  相似文献   

9.
This study was undertaken to assess 2,4-D mineralization in an undulating cultivated field, along a sloping transect (458 m to 442 m above sea level), as a function of soil type, soil microbial communities and the sorption of 2,4-D to soil. The 2,4-D soil sorption coefficient (Kd) ranged from 1.81 to 4.28 L kg?1, the 2,4-D first-order mineralization rate constant (k) ranged from 0.04 to 0.13 day?1 and the total amount of 2,4-D mineralized at 130 days (M130) ranged from 24 to 39%. Both k and M130 were significantly negatively associated (or correlated) with soil organic carbon content (SOC) and Kd. Both k and M130 were significantly associated with two fatty-acid methyl esters (FAME), i17:1 and a18, but not with twenty-two other individual FAME. Imperfectly drained soils (Gleyed Dark Grey Chernozems) in lower-slopes showed significantly lesser 2,4-D mineralization relative to well-drained soils (Orthic Dark Grey Chernozems) in mid- and upper-slopes. Well-drained soils had a greater potential for 2,4-D mineralization because of greater abundance and diversity of the microbial community in these soils. However, the reduced 2,4-D mineralization in imperfectly drained soils was predominantly because of their greater SOC and increased 2,4-D sorption, limiting the bioavailability of 2,4-D for degradation. The wide range of 2,4-D sorption and mineralization in this undulating cultivated field is comparable in magnitude and extent to the variability of 2,4-D sorption and mineralization observed at a regional scale in Manitoba. As such, in-field variations in SOC and the abundance and diversity of microbial communities are determining factors that require greater attention in assessing the risk of movement of 2,4-D by runoff, eroded soil and leaching.  相似文献   

10.
Abstract

This study quantified 2,4-D [(2,4-dichlorophenoxy)acetic acid] sorption and mineralization rates in five soils as influenced by soil characteristics and nutrient contents. Results indicated that 2,4-D was weakly sorbed by soil, with Freundlich distribution coefficients ranging from 0.81 to 2.89 µg1?1/n  g?1 mL1/ n . First-order mineralization rate constants varied from 0.03 to 0.26, corresponding to calculated mineralization half-lives of 3 and 22 days, respectively. Herbicide sorption generally increased with increasing soil organic carbon content, but the extent of 2,4-D sorption per unit organic carbon varied among the soils due to differences in soil pH, clay content and/or organic matter quality. Herbicide mineralization rates were greater in soils that sorbed more 2,4-D per unit organic carbon, and that had greater soil nitrogen contents. We conclude that the effect of sorption on herbicide degradation cannot be generalized without a better understanding of the effects of soil characteristics and nutrient content on herbicide behavior in soil.  相似文献   

11.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

12.
Abstract

The aim of this study was to evaluate the effect of time of the day and their associated climatic conditions on spray deposition of two 2,4-D formulations, as well as the influence on weed control. The experiment was installed in the field in complete randomized design. Treatments were arranged in factorial design 8?×?2, with 20 repetitions. First factor corresponded to different application time (1:00, 4:00, 7:00, 10:00, 13:00, 16:00, 19:00, and 22:00) with their respective climatic conditions. The second factor consisted of two formulations of 2,4-D applied at 776?g a.e. ha?1 (2,4-D amine and 2,4-D choline salt with Colex-D? Technology) + glyphosate (816?g a.e. ha?1). There was more spray deposition when 2,4-D choline formulation was used, and such differences were more evident for applications performed under adverse climatic conditions. More spray deposition was found in applications performed at times of day with more favorable temperature and humidity of the air conditions. Only the initial control of the evaluated species was affected by the time of application.  相似文献   

13.
The main objective of the present study was to investigate possible links between biomarkers and swimming performance in the estuarine fish Pomatoschistus microps acutely exposed to metals (copper and mercury). In independent bioassays, P. microps juveniles were individually exposed for 96 h to sub-lethal concentrations of copper or mercury. At the end of the assays, swimming performance of fish was measured using a device specially developed for epibenthic fish (SPEDE). Furthermore, the following biomarkers were measured: lipid peroxidation (LPO) and the activity of the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH), glutathione S-transferases (GST), 7-ethoxyresorufin-O-deethylase (EROD), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx). LC50s of copper and mercury (dissolved throughout metal concentrations) at 96 h were 568 μg L−1 and 62 μg L−1, respectively. Significant and concentration-dependent effects of both metals on swimming resistance and covered distance against water flow were found at concentrations equal or higher than 50 μg L−1 for copper and 3 μg L−1 for mercury (dissolved throughout metal concentrations). These results indicate that SPEDE was efficacious to quantify behavioural alterations in the epibenthic fish P. microps at ecologically relevant concentrations. Significant alterations by both metals on biomarkers were found including: inhibition of AChE and EROD activities, induction of LDH, GST and anti-oxidant enzymes, and increased LPO levels, with LOEC values ranging from 25 to 200 μg L−1 for copper and from 3 to 25 μg L−1 for mercury (dissolved throughout metal concentrations). Furthermore, significant and positive correlations were found between some biomarkers (AChE and EROD) and behavioural parameters, while negative correlations were found for others (LPO, anti-oxidant enzymes and LDH) suggesting that disruption of cholinergic function through AChE inhibition, decreased detoxification capability due to EROD inhibition, additional energetic demands to face chemical stress, and oxidative stress and damage may contribute to decrease the swimming performance of fish. Since a reduced swimming capability of fish may reduce their ability to capture preys, avoid predators, and interfere with social and reproductive behaviour, the exposure of P. microps to copper and/or mercury concentrations similar to those tested here may decrease the fitness of wild populations of this species.  相似文献   

14.

This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pHpzc) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L)?1/n] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  相似文献   

15.
The effects of monoterpenes on the degradation of 14C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14C-2,4-DCP to 14CO2, after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg−1). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg−1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants.  相似文献   

16.
Abstract

Acute and subacute 2,4‐D toxicity to carp (Cyprinus carpio L.) were investigated. Acute toxicity (LC‐ 50) was investigated in semi‐static test during a 24, 48, and 96‐ hours exposition. Subacute toxicity was investigated by exposing fish to different 2,4,‐D concentrations (150, 200, and 250 mg/L) for 14 days. Biochemical and morphological changes in certain organs and tissues were investigated.

LC‐ 50 values at 24 hours exposure was 310.0 mg/L, 295.0 mg/L for 48 hours, and 270.0 mg/L for 96 hours exposure.

Subacute toxicity tests show that 2,4‐D induce changes in the enzyme activities (AP, GOT, GPT) and morphological changes in the gills, liver and kidneys, but changes are of limited biological importance.  相似文献   

17.
Abstract

Degradation of two chlorinated pesticides (2,4-D and DDT) using a 54-mL glass column packed with tezontle (a low-cost basaltic scoria) was tested. Bacteria were cultured in YPG (yeast, peptone, and glucose) liquid medium at 32°C. The rich medium was pumped during 24 h through the column to inoculate it. Later, the wasted medium was discharged and the pesticide added. Optical densities, TOC, and pesticide concentration were determined. Pesticide removals for 2,4-D (with initial concentration between 100 and 500 mg/L) were about 99%. DDT removal (at initial concentration of up to 150 mg/L) was as high as 55–99%. TOC removals for 2,4-D was in the 36-87% interval, whereas for DDT they were as high as 36–78%.  相似文献   

18.
Strok M  Smodiš B 《Chemosphere》2011,82(7):970-976
210Po and 210Pb activity concentrations in fish from the Slovenian part of Adriatic Sea, in the vicinity of a former uranium mine at ?irovski vrh and from the Slovenian market were determined. In addition, 210Po and 210Pb activity concentrations in squid from the Slovenian market and in mussels from the Slovenian part of the Adriatic Sea were also determined. Fish, squid and mussel consumption in Slovenia was assessed from the data available from Eurostat and Food and Agriculture Organisation (FAO) and the data used for the corresponding dose calculation. Fish species with the highest activity concentrations were grilled to assess possible loss of 210Po during the food preparation process. Samples were freeze dried and radiochemical separation of 210Po and 210Pb was performed. Measurements of 210Po were performed by alpha spectrometry and 210Pb by a low background gas-flow proportional counter. 210Po activity concentrations in fish, squid and mussels were from 0.039 to 35.0 Bq kg−1 fresh weight and 210Pb activity concentrations were from 0.08 to 3.03 Bq kg−1 fresh weight. Grilling of fish resulted in no significant loss of 210Po at 90 °C. The assessed combined annual effective ingestion dose due to 210Po and 210Pb for fish, squid and mussels consumed in Slovenia is 47.6 μSv year−1.  相似文献   

19.
Polybrominated diphenyl ether (PBDE) concentrations in sediment and fish from 12 principal rivers in Taiwan were investigated to determine their association with water quality parameters as well as the biota-sediment accumulation factor (BSAF) in fish with different living patterns. The highest PBDE concentration in sediment was found in the Bajhang River (261 ng g?1 dry weight (d.w.)) and the lowest in the Beinan River and the Da-an River (0.17 ng g?1 d.w.). The PBDE concentrations in fish samples ranged from 1.28 ng g?1 d.w. (Oreochromis niloticus niloticus) in the Yanshuei River to 33.7 ng g?1 d.w. (Varico rhinos barbatulus) in the Da-an River. We conclude that PBDEs contamination in sediment was significantly affected by NH3–N, pH, and DO. The BSAF results showed a parabolic trend from low- to high-brominated BDEs. Fish easily accumulated the congeners BDE-47, -100, -119, -126, and -154 from sediment. The BSAF decreased in the following order: PeBDE > HxBDE > TeBDE > other BDEs. Principle component analysis showed that demersal fish have different PBDE sources than do pelagic fish. We conclude that living and feeding habits are critical factors affecting PBDE accumulation in fish.  相似文献   

20.
Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号