首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract

Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

2.
The extent of mass loss on Teflon filters caused by ammonium nitrate volatilization can be a substantial fraction of the measured particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) or 10 microm (PM10) mass and depends on where and when it was collected. There is no straightforward method to correct for the mass loss using routine monitoring data. In southern California during the California Acid Deposition Monitoring Program, 30-40% of the gravimetric PM2.5 mass was lost during summer daytime. Lower mass losses occurred at more remote locations. The estimated potential mass loss in the Interagency Monitoring of Protected Visual Environments network was consistent with the measured loss observed in California. The biased mass measurement implies that use of Federal Reference Method data for fine particles may lead to control strategies that are biased toward sources of fugitive dust, other primary particle emission sources, and stable secondary particles (e.g., sulfates). This analysis clearly supports the need for speciated analysis of samples collected in a manner that preserves volatile species. Finally, although there is loss of volatile nitrate (NO3-) from Teflon filters during sampling, the NO3- remaining after collection is quite stable. We found little loss of NO3- from Teflon filters after 2 hr under vacuum and 1 min of heating by a cyclotron proton beam.  相似文献   

3.
Two thermodynamic equilibrium models were applied to estimate changes in mean airborne fine particle (PM2.5) mass concentrations that could result from changes in ambient concentrations of sulfate, nitric acid, or ammonia in the southeastern United States, the midwestern United States, and central California. Pronounced regional differences were found. Southeastern sites exhibited the lowest current mean concentrations of nitrate, and the smallest predicted responses of PM2.5 nitrate and mass concentrations to reductions of nitric acid, which is the principal reaction product of the oxidation of nitrogen dioxide (NO2) and the primary gas-phase precursor of fine particulate nitrate. Weak responses of PM2.5 nitrate and mass concentrations to changes in nitric acid levels occurred even if sulfate concentrations were half of current levels. The midwestern sites showed higher levels of fine particulate nitrate, characterized by cold-season maxima, and were projected to show decreases in overall PM levels following decreases of either sulfate or nitric acid. For some midwestern sites, predicted PM2.5 nitrate concentrations increased as modeled sulfate levels declined, but sulfate reductions always reduced the predicted fine PM mass concentrations; PM2.5 nitrate concentrations became more sensitive to reductions of nitric acid as modeled sulfate concentrations were decreased. The California sites currently have the highest mean concentrations of fine PM nitrate and the lowest mean concentrations of fine PM sulfate. Both the estimated PM2.5 nitrate and fine mass concentrations decreased in response to modeled reductions of nitric acid at all California sites. The results indicate important regional differences in expected PM2.5 mass concentration responses to changes in sulfate and nitrate precursors. Analyses of ambient data, such as described here, can be a key part of weight of evidence (WOE) demonstrations for PM2.5 attainment plans. Acquisition of the data may require special sampling efforts, especially for PM2.5 precursor concentration data.  相似文献   

4.
ABSTRACT

Because the Federal Reference Method for PM25 specifies the collection of ambient particles on Teflon filters, we have examined the loss of a known volatile species, particulate nitrate, during sampling. Data are presented from two studies in southern California for which parallel samples were collected by different methods. Differences in collected nitrate are modeled using an evaporation model based on the work of Zhang and McMurry. The average nitrate obtained from sampling with Teflon filters was 28% lower on average than that measured by denuded nylon filters. In contrast, cascade impactor samples were within 5% of the denuded nylon filter on average. A simple model is presented that accounts for the particulate nitrate loss from Teflon filters either by scavenging nitric acid and ammonia in the sampler inlet or by heating the filter substrate during sampling. The observed magnitude of loss is explained by any of the following situations: (1) 100% nitric acid and ammonia vapor loss in the inlet, (2) 5 °C heating of the filter substrate above ambient temperature during sampling, or (3) a combination of these factors, such as 50% vapor loss in the inlet and 3 °C heating of the filter.  相似文献   

5.
Abstract

The extent of mass loss on Teflon filters caused by ammonium nitrate volatilization can be a substantial fraction of the measured particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5)or 10 μm (PM10) mass and depends on where and when it was collected. There is no straightforward method to correct for the mass loss using routine monitoring data. In southern California during the California Acid Deposition Monitoring Program, 30-40% of the gravimetric PM2.5 mass was lost during summer daytime. Lower mass losses occurred at more remote locations. The estimated potential mass loss in the Interagency Monitoring of Protected Visual Environments network was consistent with the measured loss observed in California. The biased mass measurement implies that use of Federal Reference Method data for fine particles may lead to control strategies that are biased toward sources of fugitive dust, other primary particle emission sources, and stable secondary particles (e.g., sulfates). This analysis clearly supports the need for speciated analysis of samples collected in a manner that preserves volatile species. Finally, although there is loss of volatile nitrate (NO3 ?) from Teflon filters during sampling, the NO3 ? remaining after collection is quite stable. We found little loss of NO3 ? from Teflon filters after 2 hr under vacuum and 1 min of heating by a cyclotron proton beam.  相似文献   

6.
Outdoor and indoor fine particulate species were measured at the Lindon Elementary School in Lindon, Utah, to determine which components of ambient fine particles have strong indoor and outdoor concentration correlations. PM2.5 mass concentrations were measured using tapered element oscillating microbalance (TEOM) monitors and by gravimetric analysis of Teflon filter samples. Gas-phase HNO3, sulfur dioxide, particulate nitrate, strong acid, and particulate sulfate were measured using annular denuder samplers. Soot was measured using quartz filters in filter packs. Total particulate number was measured with a condensation nucleus counter (CNC). Total particulate number and fine particulate sulfate and soot were correlated for ambient and indoor measurements. Indoor PM2.5 mass showed a low correlation with outdoor PM2.5 mass because of the influence of coarse material from student activities on indoor PM2.5. Fine particle acidity and the potentiation of biological oxidative mechanisms by iron were not correlated indoors and outdoors.  相似文献   

7.
Recent studies associate particulate air pollution with adverse health effects; however, the exposure to indoor particles of outdoor origin is not well characterized, particularly for individual chemical species. We conducted a field study in an unoccupied, single-story residence in Clovis, California to provide data and analyses to address issues important for assessing exposure. We used real-time particle monitors both outdoors and indoors to quantify nitrate, sulfate, and carbon particulate matter of particle size 2.5 μm or less in diameter (PM-2.5). The results show that measured indoor ammonium nitrate concentrations were significantly lower than would be expected based solely on penetration and deposition losses. The additional reduction can be attributed to the transformation indoors of ammonium nitrate into ammonia and nitric acid gases, which are subsequently lost by deposition and sorption to indoor surfaces. A mass balance model that accounts for the kinetics of ammonium nitrate evaporation was able to reproduce measured indoor ammonium nitrate and nitric acid concentrations, resulting in a fitted value of the deposition velocity for nitric acid of 0.56 cm s−1. The results indicate that indoor exposure to outdoor ammonium nitrate in Central Valley of California are small, and suggest that exposure assessments based on total particle mass measured outdoors may obscure the actual causal relationships for indoor exposure to particles of outdoor origin.  相似文献   

8.
Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

9.
Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

10.
Measurements from sites of the Southeastern Aerosol Research and Characterization (SEARCH) program, made from 1998 to 2001, are used with a thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilbrium (SCAPE2), to extend an earlier investigation of the responses of fine particulate nitrate (NO3-) and fine particulate matter (PM2.5) mass concentrations to changes in concentrations of nitric acid (HNO3) and sulfate (SO42-). The responses were determined for a projected range of variations of SO42- and HNO3 concentrations resulting from adopted and proposed regulatory initiatives. The predicted PM2.5 mass concentration decreases averaged 1.8-3.9 microg/m3 for SO42- decreases of 46-63% from current concentrations. Combining the S042- decrease with a 40% HNO3 decrease from current concentrations (approximating expected mobile-source oxides of nitrogen [NOx] reductions by 2020) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0.2 microg/m3 for three nonurban sites and 0.8-1 microg/m3 for one nonurban and two urban sites. Increasing the HNO3 reduction to 55% (an estimate of adding Clear Skies Phase II NOx reductions) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0-0.4 microg/m3. Because of the well-documented losses of particulate NO3- from Federal Reference Method (FRM) filters, only a fraction of these incremental changes would be observed.  相似文献   

11.
The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998-1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10-2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999-2003) of filter-based PM2.5 and PM10-2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 microg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 microg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3-7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for approximately 60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components ("other") account for > or = 80% of PM10-2.5 mass. Limited data suggest that much of the unidentified mass in PM10-2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and "other." Annual means for PM2.5 and PM10-2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999-2003 period (10-20% in the case of PM2.5, dominated by 14-20% declines in sulfate and 11-26% declines in OM, and 14-25% in the case of PM10-2.5, dominated by 17-30% declines in MMO and 14-31% declines in "other"). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

12.
Fine particulate matter (PM2.5) mass was determined on a continuous basis at the Salt Lake City Environmental Protection Agency Environmental Monitoring for Public Awareness and Community Tracking monitoring site in Salt Lake City, UT, using three different monitoring techniques. Hourly averaged PM2.5 mass data were collected during two sampling periods (summer 2000 and winter 2002) using a real-time total ambient mass sampler (RAMS), sample equilibration system (SES)-tapered element oscillating microbalance (TEOM), and conventional TEOM monitor. This paper compares the results obtained from the various monitoring systems, which differ in their treatment of semivolatile material (SVM; particle-bound water, semivolatile ammonium nitrate, and semivolatile organic compounds). PM2.5 mass results obtained by the RAMS were consistently higher than those obtained by the SES-TEOM and conventional TEOM monitors because of the RAMS ability to measure semivolatile ammonium nitrate and semivolatile organic material but not particle-bound water. The SES-TEOM monitoring system was able to account for an average of 28% of the SVM, whereas the conventional TEOM monitor loses essentially all of the SVM from the single filter during sampling. Occasional mass readings by the various TEOM monitors that are higher than RAMS results may reflect particle-bound water, which, under some conditions, is measured by the TEOM but not the RAMS.  相似文献   

13.
Health studies have shown premature death is statistically associated with exposure to particulate matter <2.5 μm in diameter (PM2.5). The United States Environmental Protection Agency requires all States with PM2.5 non-attainment counties or with sources contributing to visibility impairment at Class I areas to submit an emissions control plan. These emission control plans will likely focus on reducing emissions of sulfur oxides and nitrogen oxides, which form two of the largest chemical components of PM2.5 in the eastern United States: ammonium sulfate and ammonium nitrate. Emission control strategies are simulated using three-dimensional Eulerian photochemical transport models.A monitor study was established using one urban (Detroit) and nine rural locations in the central and eastern United States to simultaneously measure PM2.5 sulfate ion (SO42−), nitrate ion (NO3), ammonium ion (NH4+), and precursor species sulfur dioxide (SO2), nitric acid (HNO3), and ammonia (NH3). This monitor study provides a unique opportunity to assess how well the modeling system predicts the spatial and temporal variability of important precursor species and co-located PM2.5 ions, which is not well characterized in the central and eastern United States.The modeling system performs well at estimating the PM2.5 species, but does not perform quite as well for the precursor species. Ammonia is under-predicted in the coldest months, nitric acid tends to be over-predicted in the summer months, and sulfur dioxide appears to be systematically over-predicted. Several indicators of PM2.5 ammonium sulfate and ammonium nitrate formation and chemical composition are estimated with the ambient data and photochemical model output. PM2.5 sulfate ion is usually not fully neutralized to ammonium sulfate in ambient measurements and is usually fully neutralized in model estimates. The model and ambient estimates agree that the ammonia study monitors tend to be nitric acid limited for PM2.5 nitrate formation. Regulatory strategies in this part of the country should focus on reductions in NOX rather than ammonia to control PM2.5 ammonium nitrate.  相似文献   

14.
Aerosol carbon sampling methods and biases were evaluated during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) and Fresno Supersite programs. PM2.5 sampling was conducted using Desert Research Institute (DRI) sequential filter samplers (SFS) from December 1999 through February 2001 at two urban sites (Fresno and Bakersfield), one regional transport site (Angiola), and two boundary sites (Bethel Island and Sierra Nevada Foothills) during CRPAQS in the San Joaquin Valley (SJV). Additional filter-based sampling was done in Fresno as part of the US Environmental Protection Agency (EPA) Supersites program. Organic carbon (OC) and elemental carbon (EC) concentrations were higher during winter (December-February) than summer (June-August) and this trend was most pronounced at Fresno and Bakersfield. OC and EC displayed similar diurnal trends during winter and summer at Fresno and during winter at Angiola. The diurnal pattern at Angiola reflected the transport of secondary pollutants to the site. Collocated measurements of OC and EC on undenuded quartz-fiber filters were made at Fresno with the DRI SFS and the Andersen FRM and RAAS samplers. All average differences in OC between samplers were less than their respective measurement uncertainties. Positive and negative OC biases were evaluated at Fresno using the Andersen RAAS sampler with carbon-denuded and undenuded channels with Teflon-membrane and quartz-fiber filter pairs. Differences between the denuded particle OC and that obtained by subtracting the quartz-behind-Teflon or quartz-behind-quartz OC from the undenuded quartz-fiber front filter were less than twice their measurement uncertainties in most cases. Particulate OC in the denuded channel agreed most closely with the difference between undenuded front and backup quartz-fiber OC.  相似文献   

15.
The tapered element oscillating microbalance (TEOM) is one type of continuous ambient particulate matter (PM) monitor. Adsorption and desorption of moisture and semivolatile species may cause positive or negative artifacts in TEOM PM mass measurement. The objective of this field study was to investigate possible uncertainties associated with TEOM measurements in the poultry operation environment. For comparisons of TEOM with filter-based gravimetric method, four instruments (TEOM-PM10, low-volume PM10 sampler TEOM-PM2.5, and PM2.5 speciation sampler) were collocated and tested inside a poultry house for PM2.5 and PM10 (PM with aerodynamic equivalent diameter < or =2.5 and < or =10 microm, respectively) measurements. Fifteen sets of 24-hr PM10 concentrations and 13 sets of 24-hr PM2.5 measurements were obtained. Results indicate that compared with filter-based gravimetric method, TEOM gave significantly lower values of both PM10 and PM2.5 mass concentrations. For PM10, the average ratio of TEOM to the gravimetric method was 0.936. For PM2.5, the average ratio of TEOM to the gravimetric method was 0.738. Particulate matter in the poultry houses possibly contains semivolatile compounds and moisture due to high levels of relative humidity (RH) and gas pollutants. The internal heating mechanism of the TEOM may cause losses in mass through volatilization. To investigate the effects of TEOM settings on concentration measurements, the heaters of two identical TEOMs were set at 50 degrees C, 30 degrees C, or no heating at all. They were collocated and tested for total suspended particle (TSP), PM10, and PM25 measurements in layer house for 6 weeks. For all TSR PM10, and PM2.5 measurements, the internal TEOM temperature setting had a significant effect (P < 0.05). Significantly higher PM mass concentrations were measured at lower temperature settings. The effects of environmental (i.e., temperature, RH, NH3 and CO2 concentrations) and instrumental (i.e., filter loading and noise) parameters on PM measurements were also assessed using regression analysis.  相似文献   

16.
This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33–41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m?3 before and 13 to 33 μg m?3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.  相似文献   

17.
ABSTRACT

In February 1993, the South Coast Air Basin (SCAB) was redesignated as a “serious” nonattainment area for PM10. To improve the understanding and characterization of fine particulate matter in the SCAB, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive PM10 Technical Enhancement Program (PTEP). Using enhanced PTEP monitors (specially designed multichannel/multifilter samplers), a one-year fine particulate matter (PM) monitoring program was initiated in January 1995. As part of the special monitoring program, nitric acid, ammonia, and speciated PM10 and PM2.5 concentrations were measured at five locations in the SCAB (downtown Los Angeles, Anaheim, Diamond Bar, Fontana, and Rubidoux) and at one background station (San Nicolas Island). The PM2.5 data are the first spatially resolved speciated data collected in the SCAB on an annual basis. Within the SCAB, where nitrate is a major component of PM2.5, nitrate losses have been documented. The spatial and temporal variations of the nitrate losses during PM2.5 sampling and the uncertainties of the nitrate losses are discussed. Significant losses occur at a low mass range, between 10 and 50 ìg/m3. Significant gains occur at an even lower mass range of less than 30 ìg/m3. On an annual average basis, nitrate losses vary between 1.25 and 2.32 ìg/m3 and the SCAB-wide average value of nitrate loss is 1.8 ìg/m3 based on five PTEP stations in the SCAB. The maximum nitrate losses for each station vary from 6.4 ìg/m3 to 22.5 ìg/m 3. Theoretical prediction of the sampling efficiency of the nitrate during PM2.5 sam - pling was compared with the PTEP data. In general, theoretical prediction was in good agreement with measured values.  相似文献   

18.
Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 microg m(-3) and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head(-1) day(-1), showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

19.
INTENTION, GOAL, SCOPE, BACKGROUND: As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. OBJECTIVE: This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. METHODS: Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). RESULTS AND DISCUSSION: Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. CONCLUSIONS: The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. RECOMMENDATION AND OUTLOOK: The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.  相似文献   

20.
The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subject's indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearson's R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号